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1. Covalent Bonding: Neutral Systems

The proposed four-parameter pair-potential function V (R, α, β, η, κ) for the neutral covalent
bonding systems is

V (R, α, β, η, κ) =
J1(R, α, κ, η) + K1(R, α, κ, β)

1 + S0(R)
, (1)

with J1(R, α, κ, η) = e−4αR(1+κR)
(

1
R

+ η
)
, K1(R,α, κ, β) = e−αR(1+κR)

(
1
R
− βR

)
, and S0(R) =

e−R
(
1 + R + R2

3

)
, where R is the nuclear-nuclear distance and α, β, η, κ are adjusting param-

eters.

1.1. H2

Here we take the ground state of H2 as an example. First, we compute the potential en-
ergy of the ground-state H2 by using couple cluster method with single and double excitation
(CCSD) [118] and basis set aug-cc-pV5Z (Augmented correlation-consistent core-valence basis
sets up to quintuple-zeta quality) that were implemented in Gaussian 09 package [119]. As
shown in Fig.1.1, our CCSD/aug-cc-pV5Z calculations are in excellent agreement with the ex-
act data [120]. Then, we fit the CCSD/aug-cc-pV5Z data by using the four-parameter potential
function Eq.(1). The Root-Mean-Square (RMS) for this fitting is 0.00046, and four potential
parameters are determined to be α = 1.24179616, β = 1.91867424, κ = 0.0478910411, and
η = 2.8004031. Fig.1.1 presents the fitted potential energy curve (PEC), which agrees well
with the exact data [120]. Also, in the short- and large-R regions shown in Fig.1.1(a) and
(c), respectively, our four-parameter potential is greatly improved over the three-parameter
potential [100].

Recently, Cahill and Parsegian [98] have demonstrated that their developed five-parameter
Rydberg-London potential for the ground-state H2 is five times more accurate than Morse [6],
Varshni [34], and Hulburt-Hirschfelder [25] potentials, and are four orders of magnitude
more accurate than Lennard-Jones [3] and harmonic potentials. In Fig.1.1, we compare
our four-parameter potential with Rydberg-London potential. In the intermediate-R region
(Fig.1.1(b)), Rydberg-London potential except a visible deviation in the well bottom over-
laps with our four-parameter potential curve. However, Rydberg-London potential [98] in the
short-R region (Fig.1.1(a)) is much softer than our four-parameter potential, and displays a
discernible deviation in the large-R region (Fig.1.1(c)). This comparison concludes that our
four-parameter potential is more accurate than five-parameter Rydberg-London potential.

Rydberg-Klein-Rees (RKR) [121] turning points and vibrational levels provide accurate ref-
erence standards for assessing the quality of a potential-energy curve. Thus, we have calculated
the vibrational energies for the ground-state H2 by using the fitted four-parameter potential.
The computed results are summarized in Table 1.1 and compared with the literature data.
We find that our computed vibrational energies are within a relative error of less than 1% and
3% for ν = 0, 1, ..., 12 and ν = 13, 14 levels, respectively, compared to experiment [122]. The
present results are more accurate than those obtained by using three-parameter potential [100]
and five-parameter Rydberg-London potential [98].
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Fig.1.1: The comparison between 4-parameter potential (this work) (Red line, α = 1.24179616, β = 1.91867424, κ = 0.0478910411,

and η = 2.8004031), 3-parameter potential (Blue line, Ref. [100], α = 1.5065756, β = 2.48475652, and γ = 1.45 ), Rydberg-London

potential (Green line, Ref. [98], a = 53.8, b = 2.99, c = 2.453, d = 3.884, and e = 47.6), CCSD/aug-cc-pV5Z (Dark line), and

the exact data (Dark filled circles, Ref. [120]) for the ground-state H2: (a) Short-R (0.2 ∼ 0.7 Bohr)(Note: CCSD results overlap

with the exact data); (b) Intermediate-R ( 0.7 ∼ 4.2 Bohr); (c) Large-R (4.2 ∼ 7 Bohr) regions.
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Table 1.1: The calculated vibrational energies for H2 using four-parameter (this work, α = 1.24179616, β = 1.91867424,

κ = 0.0478910411, and η = 2.8004031), three-parameter [100] (α = 1.5065756, β = 2.48475652, γ = 1.45 ), and Rydberg-

London [98] (a = 53.8, b = 2.99, c = 2.453, d = 3.884, and e = 47.6) potentials. The value in the parenthesis is the relative error

(δ = |Theory − Experiment|/Experiment) of the calculation, compared to experiment [122].

ν Exp. (Ref. [122]) 3-Parameter (Ref. [100]) Rydberg-London (Ref. [98] 4-Parameter (this work)
[ eV ] [ eV ] [ eV ] [eV]

0 -4.4774 -4.4628 (0.33%) -4.5247 (1.06%) -4.4852 (0.17%)
1 -3.9615 -3.9218 (1.00%) -3.9779 (0.41%) -3.9661 (0.12%)
2 -3.4747 -3.4166 (1.67%) -3.4729 (0.05%) -3.4750 (0.01%)
3 -3.0166 -2.9465 (2.32%) -3.0101 (0.22%) -3.0123 (0.14%)
4 -2.5866 -2.5111 (2.92%) -2.5856 (0.04%) -2.5783 (0.32%)
5 -2.1847 -2.1099 (3.42%) -2.1899 (0.24%) -2.1734 (0.52%)
6 -1.8110 -1.7427 (3.77%) -1.8169 (0.33%) -1.7981 (0.71%)
7 -1.4661 -1.4093 (3.87%) -1.4673 (0.08%) -1.4532 (0.88%)
8 -1.1508 -1.1097 (3.57%) -1.1460 (0.43%) -1.1396 (0.97%)
9 -0.8665 -0.8439 (2.61%) -0.8578 (1.00%) -0.8583 (0.94%)
10 -0.6153 -0.6123 (0.49%) -0.6068 (1.38%) -0.6109 (0.71%)
11 -0.4000 -0.4155 (3.88%) -0.3957 (1.08%) -0.3994 (0.14%)
12 -0.2245 -0.2543 (13.27%) -0.2271 (1.16%) -0.2266 (0.93%)
13 -0.0945 -0.1301 (37.67%) -0.1031 (9.10%) -0.0966 (2.25%)
14 -0.0174 -0.0452 (159.77%) -0.0264 (51.72%) -0.0169 (2.73%)

1.2. Li2
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Fig.1.2: The comparison between 4-parameter model potential (Red, this work, α = 0.221158172, β = 0.0981516842, κ =

0.145366735, and η = 1.19828642), Rydberg-London potential (Dark line, a = 199.481, b = 1.62, c = 0.5101, C6 = 829.33,

d = 208000, Ref. [124]), CCSD/6-311++G(3df, 2pd)(Green line, Ref. [100]), 3-parameter model potential (Blue line, α = 0.585395,

β = 0.73399479, γ = 0.2125, Ref. [100]), and the experimental RKR data points (filled circles, Ref. [123].) for the ground state of

Li2.

The lithium dimer has only 6 electrons and has been one of the most studied diatomic
molecules. It is a “light” molecule for which ab initio calculations can be of great precision. Its
spectroscopic constants are of the same order of magnitude as those of numerous other diatomic

5



molecules (in contrast to H2), and its properties are often calculated as a test of theoretical
approximations used for heavier molecules. Then the ab initio determined parameters are
often highly reliable and also can serve as a check of the experimental determinations. For
these reasons, Li2 is a good model for both theoretical and experimental investigations of the
interactions in neutral homonuclear diatomic molecules. Here, we take Li2 as an example, too.

Table 1.2: Calculated vibrational energies for 7Li2 by using the four-parameter potential (this work, α = 0.221158172, β =

0.0981516842, κ = 0.145366735, and η = 1.19828642), where δ = |Theory−Experiment|/Experiment is the relative error of the

present calculation, compared to experiment [123].

ν Exp. (Ref. [123]) this work δ ν Exp. (Ref. [123]) this work δ
[cm−1] [cm−1] [cm−1] [cm−1]

0 175.0320 175.0334 0.001% 19 5790.7056 5810.0379 0.334%
1 521.2611 523.1824 0.369% 20 6022.6578 6041.5448 0.314%
2 862.2642 866.1712 0.453% 21 6246.9482 6265.4344 0.296%
3 1197.9974 1203.9134 0.494% 22 6463.3140 6481.4870 0.281%
4 1528.4128 1536.3202 0.517% 23 6671.3979 6689.4645 0.271%
5 1853.4573 1863.2996 0.531% 24 6870.8931 6889.1075 0.265%
6 2173.0721 2184.7566 0.538% 25 7061.4199 7080.1312 0.265%
7 2487.1914 2500.5927 0.539% 26 7242.5556 7262.2217 0.272%
8 2795.7419 2810.7056 0.535% 27 7413.8431 7435.0293 0.286%
9 3090.6412 3114.9891 0.788% 28 7574.8736 7598.1611 0.307%
10 3395.7978 3413.3326 0.516% 29 7724.9165 7751.1715 0.339%
11 3687.1094 3705.6203 0.502% 30 7863.7083 7893.5477 0.379%
12 3972.4624 3991.7317 0.485% 31 7990.4162 8024.6909 0.429%
13 4251.7309 4271.5400 0.466% 32 8104.4730 8143.8879 0.486%
14 4524.7756 4544.9122 0.445% 33 8205.2323 8250.2681 0.549%
15 4791.4274 4811.7084 0.423% 34 8292.0293 8342.7322 0.611%
16 5051.5343 5071.7806 0.401% 35 8364.3066 8419.8251 0.664%
17 5304.9322 5324.9723 0.378% 36 8421.6123 8479.4715 0.687 %
18 5551.3992 5571.1172 0.355% 37 8463.9648 8518/2744 0.642 %

We fit the RKR data point [123] of the ground state of Li2 using the four-parameter
potential function Eq.(1). The root-mean-square (RMS) for this fitting is 0.0000781, and
the potential parameters are determined to be α = 0.221158172, β = 0.0981516842, κ =
0.145366735, and η = 1.19828642. In Figure 1.2, we report the fitting results and compare
them with Rydberg-London potential [124], ab initio CCSD/6-311++G(3df, 2pd) calculation,
and the accurate RKR experimental data [123]. The new potential curve for Li2 agrees very
well with experiment RKR data and CCSD/6-311++G(3df, 2pd) calculations. In the repulsive
part, we find that our four-parameter potential gives a much better performance than Rydberg-
London potential [98]. In the region of 7.5 < R < 10 shown in Fig.1.2(b), we find that
Rydberg-London potential [98] shows a slight deviation from our four-parameter potential and
the accurate data, while three-parameter potential [100] displays a large deviation from four-
parameter potential curve. We conclude that the four-parameter potential is more accurate
than five-parameter Rydberg-London potential [124] and three-parameter potential [100].

Then, we calculate the vibrational energies for the ground-state Li2 using the four-parameter
potential. The calculated results are summarized in Table 1.2. We find that all calculated
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vibrational energies are within a relative error of less than 1%, compared to the experimental
data [123].

1.3. B2

The electron-deficient diatomic boron molecule B2 has long puzzled the scientists. As yet, only
six vibrational energy levels are known from experiment [126] for 11B2 molecule in the ground
electronic state. Very recently, Scuseria and colleagues [127] have generated a highly accurate
potential energy curve for the ground state of B2 by using advanced ab initio method. In
their ab initio study, all rotational vibrational levels of the ground state are determined up to
the dissociation limit with near-spectroscopic accuracy (< 10cm−1). Using the even-tempered
Gaussian (ETG) function,V (R) =

∑7
k=0 ake

−αβkR2
, Scuseria and colleagues [127] have found an

exact fitting of their accurate ab initio potential curve for the ground-state B2 and determined
the 10 fitting parameters, α = 0.166, β = 1.5368, a0 = 8.23987249, a1 = −107.15781150,
a2 = 303.54772065, a3 = −1668.82025703, a4 = 2015.42869563, a5 = −353.81494323, a6 =
2257.70466507, and a7 = 3915.44790772. Both accurate and ETG fitting results are presented
in Figure 1.3.
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Fig.1.3: The comparison between 4-parameter potential (this work) (Red line, α = 0.183899426, β = 0.462900133, κ =

0.813404073, and η = 24.2300391 ), the fitted result (Blue line, Ref. [127]) by using the Even-Tempered Gaussian (ETG)

function, V (R) =
∑7

k=0
ake−αβkR2

( α = 0.166, β = 1.5368, a0 = 8.23987249, a1 = −107.15781150, a2 = 303.54772065,

a3 = −1668.82025703, a4 = 2015.42869563, a5 = −353.81494323, a6 = 2257.70466507, a7 = 3915.44790772), and the most

accurate data (dark filled circles, Ref. [127]) for the ground state of B2.

Then, we also fit the accurate ab initio data of Scuseria and colleagues [127] by using the
new potential function given by Eq.(1). The RMS for this fitting is 0.0018, and the fitted
parameters are determined to be α = 0.183899426, β = 0.462900133, κ = 0.813404073, and
η = 24.2300391. Figure 1.3 presents our fitted potential curve. We find that the fitted curve
except a slight deviation at R > 5.5 Bohr agrees well with the accurate curve.

Then, we calculate the vibrational energies for the ground-state B2 by using the derived
four-parameter potential. The computed results are summarized in Table 1.3. In comparison
with the accurate ab initio data [127], all calculated vibrational energies except the first two
levels (ν = 1, 2) are within the relative error of less than 1% (those for the levels ν = 1, 2 are
slightly larger than 1%).
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Table 1.3: Calculated vibrational energies for 11B2 by using the four-parameter potential (this work, α = 0.183899426,

β = 0.462900133, κ = 0.813404073, and η = 24.2300391 ), where δ = |Theory − Accurate|/Accurate is the relative error of the

present calculation, compared to the accurate data [127].

ν this work Accurate δ ν this work Accurate δ
[cm−1] [cm−1] [cm−1] [cm−1]

0 0. 0. 0. 18 15566.78 15670.66 0.66%
1 1045.11 1031.93 1.27% 19 16226.58 16339.18 0.69%
2 2068.65 2046.35 1.09% 20 16862.16 16982.85 0.71%
3 3070.81 3043.08 0.91% 21 17472.66 17600.88 0.73%
4 4051.72 4021.88 0.74% 22 18059.83 18192.41 0.73%
5 5011.51 4982.51 0.58% 23 18626.90 18756.49 0.69%
6 5950.27 5924.73 0.43% 24 19173.45 19292.11 0.62%
7 6868.07 6848.25 0.29% 25 19692.36 19798.1 0.53%
8 7764.92 7752.78 0.16% 26 20171.69 20273.22 0.50%
9 8640.84 8638.00 0.03% 27 20604.99 20716.06 0.54%
10 9495.79 9503.57 0.08% 28 21008.64 21125.11 0.55%
11 10329.71 10349.13 0.19% 29 21403.24 21498.7 0.44%
12 11142.51 11174.28 0.28% 30 21784.45 21835.08 0.23%
13 11934.08 11978.60 0.37% 31 22138.34 22132.47 0.03%
14 12704.24 12761.64 0.45% 32 22454.39 22389.37 0.29%
15 13452.79 13522.91 0.52% 33 22725.49 22605.03 0.53%
16 14179.48 14261.89 0.58% 34 22945.83 22780.26 0.73%
17 14884.20 14978.01 0.63% 35 23205.37 23024.09 0.79%

1.4. C2

C2 molecule is a common intermediate in combustion reactions of carbon containing materials,
having first been observed spectroscopically in flames. It plays also a crucial role in the
chemistry of the interstellar medium and is found in many extraterrestrial sources such as
comets, carbon stars, proto-planetary nebulas, and molecular clouds. Theoretically [128], the
ground electronic state X 1 ∑+

g of C2 is known to exhibit anomalous bonding, having two π
bonds but no σ bond, which makes the prediction of its potential energy curve a challenging
test for quantum chemical methods. In 2004, Abrams and Sherrill [129] reported the most
accurate potential energy curve of the ground state of C2 by performing a full configuration
interaction calculation, which exactly solve the electronic Schrödinger equation within the
space spanned by a 6− 31G∗ Gaussian basis set.

Here we fit the accurate ab initio data of Abrams and Sherrill [129] by using the four-
parameter potential function given by Eq.(1). The RMS for this fitting is 0.0027, and the
fitting parameters are determined to be α = 0.127145432, β = 0.967192362, κ = 1.89580627,
and η = 28.3280362. Figure 1.4. presents the fitted potential curve, and Table 1.4 compares
the fitted potential energies with the accurate potential energies [129]. We find that the fitted
curve agrees very well with the accurate data [129].
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Fig.1.4: Comparison between 4-parameter model (this work) (Red line, α = 0.127145432, β = 0.967192362, κ = 1.89580627, and

η = 28.3280362 ) and full configuration interaction calculation (Full CI) (dark filled circles, Ref. [129]) for the ground state of C2.

Table 1.4: The fitted potential energies for the ground state of C2 by using the four-parameter potential (this work) (α =

0.127145432, β = 0.967192362, κ = 1.89580627, and η = 28.3280362 ), compared to the accurate energies (Ref. [129]. All energies

are relative to -75.509909 Hartree [129]). Energy and R are in units of Hartree and Å, respectively.

R Accurate (Ref. [129]) this work R Accurate (Ref. [129]) this work
0.90 0.192291 0.193520 1.50 -0.167216 -0.171464
0.95 0.052244 0.052021 1.60 -0.137019 -0.144248
1.00 -0.048426 -0.049431 1.70 -0.111252 -0.117716
1.05 -0.118736 -0.119608 1.80 -0.090531 -0.093544
1.10 -0.165728 -0.165817 1.90 -0.072506 -0.072529
1.15 -0.194902 -0.193992 2.00 -0.056735 -0.054931
1.20 -0.210564 -0.208838 2.20 -0.032231 -0.029448
1.25 -0.216084 -0.214014 2.40 -0.016548 -0.014472
1.30 -0.214115 -0.212314 2.60 -0.007538 -0.006538
1.35 -0.206746 -0.205840 2.80 -0.002657 -0.002722
1.40 -0.195633 -0.196155 - - -

1.5. N2

N2 is the most abundant component of the Earth’s atmosphere. This fact makes its optical and
other properties the topics of great importance. Over the past century, numerous spectroscopic
studies have been performed on this system, and a number of high quality ab initio studies
have been reported for this system. The work of Gdanitz [130], and Li and Paldus [131]
reported well-accepted accurate and portable potential energy function for the ground state
X 1 ∑+

g of N2. In this work, we fit the accurate ab initio data of Li and Paldus [131] by using
the new potential function given by Eq.(1). The RMS for this fitting is 0.00248, and the fitted
potential parameters are determined to be α = 0.151104274, β = 1.78382371, κ = 1.99999854,
and η = 42.591009. Figure 1.5 presents the fitted potential curve and compares with Rydberg-
London potential [124]. We find that the fitted 4-parameter potential curve agrees well with
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the accurate ab initio potential curves ( MR-CI [130] and 56R RMR CCSD [131]) and Rydberg-
London potential [124].
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Fig.1.5: Comparison between 4-parameter potential (this work) (Red line, α = 0.151104274, β = 1.78382371, κ = 1.99999854,

and η = 42.591009 ), Rydberg-London potential (Dark line, Ref. [124], a = 3752.644, b = 4.3533, c = 1.1777, C6 = 14.382,

d = 34.8), multiple-reference configuration interaction (MR CI) calculation (dark filled circles, Ref. [130]), and reduced multi-

reference coupled-cluster with singles and doubles (RMR CCSD) (Dark green open circles, Ref. [131]) for the ground state of

N2.

1.6. F2

The first reliable report on the potential energy of the fluorine molecule F2 is the 1976 paper
of Colbourn and co-workers [135], where the absorption spectrum of F2, in the 780-1020Å
range has been photographed at sufficient resolution to allow a rotational analysis of many
bands. An analysis of the bands of this system has determined the vibrational levels of the
ground state up to the vibrational level of ν = 22. In 2007, Bytautas et al. [134] reported
the accurate ab initio potential energy curve of the ground state of F2 by performing full
configuration interaction (Full CI) calculations. They have also found an accurate analytical
expression [103] (i.e., even-Tempered Gaussian (ETG) function): V (R) =

∑4
k=0 ake

−αβkR2

(α = 0.41, β = 2.36, a0 = 0.00533126, a1 = −0.758546, a2 = 4.46776, a3 = −8.12792,
a4 = 233913.56201), by fitting the experimental RKR data points [135].

We have fitted the experimental RKR points [135] of the ground state of F2 by using
the four-parameter potential function given by Eq.(1). The RMS for this fitting reaches
0.0014, and the potential parameters are determined to be α = 0.029803514, β = 0.460794341,
κ = 9.999999811, and η = 54.737768091. The fitted results are presented in Figure 1.6. The
fitted potential curve agrees well with the full CI calculation and experimental RKR data
points. To be noted, the equilibrium position ( Re = 2.6226 Bohr, Vmin = −0.0611474 Hartree)
for this fitting is slightly shifted by 0.05 Bohr in comparison with experiment (Re = 2.6705
Bohr, Vmin = −0.0610935761 Hartree).
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Fig.1.6: The comparison between four-parameter potential (Red line, this work, α = 0.029803514, β = 0.460794341, κ =

9.999999811, and η = 54.737768091), accurate full configuration interaction (Full CI) calculation (green filled circles, Ref. [134]),

the result (Blue line, Ref. [103]) ) of fitting the experimental RKR data points by using the Even-Tempered Gaussian (ETG)

function, V (R) =
∑4

k=0
ake−αβkR2

(α = 0.41, β = 2.36, a0 = 0.00533126, a1 = −0.758546, a2 = 4.46776, a3 = −8.12792,

a4 = 233913.56201), and experimental RKR data points ( dark open circles, Ref. [135]) for the ground state of F2.

Then, we calculate the vibrational energies for the ground-state F2 using the derived four-
parameter potential. The calculated results are summarized in Table 1.6. In comparison with
the experimental RKR data [135], all calculated vibrational energies except the first seven
levels (ν = 1− 7) are within the relative error of less than 1% (those for the levels ν = 1− 7
are less than 4.5%).

Table 1.6: Calculated vibrational energies for 19F2 using the four-parameter potential ( this work, α = 0.029803514, β =

0.460794341, κ = 9.999999811, and η = 54.737768091). Relative δ = |Theory − Experiment|/Experiment of the present

calculation, compared to experiment [135].

ν this work Exp. (Ref. [135]) δ ν this work Exp. (Ref. [135]) δ ν this work Exp.(Ref. [135]) δ
[cm−1] [cm−1] % [cm−1] [cm−1] % [cm−1] [cm−1] %

0 0 0 0 8 6518.11 6455.17 0.97 16 10963.51 11053.90 0.81
1 931.88 893.90 4.25 9 7187.19 7141.63 0.63 17 11366.25 11468.96 0.89
2 1829.14 1764.15 3.68 10 7824.48 7798.48 0.33 18 11731.35 11842.62 0.93
3 2692.48 2610.22 3.15 11 8429.83 8424.67 0.06 19 12056.85 12172.25 0.94
4 3522.50 3431.53 2.65 12 9003.00 9019.11 0.17 20 12340.24 12452.98 0.90
5 4319.70 4227.43 2.18 13 9543.59 9580.63 0.38 21 12578.05 12678.00 0.78
6 5084.52 4997.19 1.74 14 10051.06 10108.02 0.56 22 12765.12 12830.38 0.50
7 5817.25 5740.05 1.34 15 10524.69 10599.62 0.70
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1.7. LiH
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Fig.1.7: Comparison between 4-parameter potential (this work) (Red line, α = 0.590929935, β = 0.437032497, κ = 0.0488894485,

and η = 11.33519), 3-parameter potential (Blue line, α = 0.8885591, β = 1.51479003, γ = 0.345, Ref. [100]), CCSD/6-

311++G(3df,3pd)(Green line, Ref. [100]), accurate data (Green open circles, Ref. [136]), and experimental RKR data(dark

filled circles, Ref. [137].) for the ground state of LiH.

Table 1.7: Calculated vibrational energies for isotopes 7LiH using the four-parameter potential (this work) (α = 0.590929935,

β = 0.437032497, κ = 0.0488894485, and η = 11.33519) and three-parameter potential ( α = 0.8885591, β = 1.51479003, γ = 0.345

, Ref. [100]). The value in the parenthesis is the relative error of the numerical calculation, compared to experiment [137].

Dissociation energy De = 2.515 eV.

3-Parameter (Ref. [100]) this work Exp. (Ref. [137]) 3-Parameter (Ref. [100]) this work Exp. (Ref. [137])
ν [ eV ] [ eV ] [ eV ] ν [ eV ] [ eV ] [ eV ]
0 -2.4283 (0.02%) -2.4305 (0.08%) -2.4287 11 -0.8545 (1.27%) -0.8606 (0.57%) -0.8655
1 -2.2594 (0.03%) -2.2639 (0.17%) -2.2601 12 -0.7456 (1.13%) -0.7497 (0.58%) -0.7541
2 -2.0949 (0.11%) -2.1.18 (0.22%) -2.0971 13 -0.6431 (0.77%) -0.6449 (0.49%) -0.6481
3 -1.9355 (0.21%) -1.9441 (0.23%) -1.9395 14 -0.5471 (0.07%) -0.5464 (0.20%) -0.5475
4 -1.7812 (0.34%) -1.7910 (0.21%) -1.7873 15 -0.4577 (1.10%) -0.4545 (0.40%) -0.4527
5 -1.6321 (0.50%) -1.6427 (0.15%) -1.6403 16 -0.3753 (3.05%) -0.3694 (1.44%) -0.3642
6 -1.4884 (0.67%) -1.4993 (0.05%) -1.4985 17 -0.3001 (6.27%) -0.2916 (3.25%) -0.2824
7 -1.3502 (0.85%) -1.3609 (0.07%) -1.3618 18 -0.2322 (11.47%) -0.2213 (6.25%) -0.2083
8 -1.2175 (1.03%) -1.2276 (0.21%) -1.2302 19 -0.1721 (20.43%) -0.1591 (11.34%) -0.1429
9 -1.0906 (1.17%) -1.0997 (0.34%) -1.1035 20 -0.1200 (37.14%) -0.1055 (20.61%) -0.0875
10 -0.9696 (1.26%) -0.9773 (0.48%) -0.9820 21 -0.0764 (73.64%) -0.0614 (39.46%) -0.0440

Lithium hydride, LiH, has been the object of intense theoretical and spectroscopic study
since LiH represents the smallest neutral heteropolar molecule. Its simple electronic structure
makes this molecule one of the favorite subjects that spectroscopists and theoretical chemists
have extensively studied since 1930s. Highly accurate experimental data are available for
this molcule [137]. Among the reported ab initio calculations of LiH, one should particularly
mention the benchmark ECG (exponentially correlated Gaussian) calculations by Cencek and
Rychlewski [138]. Very recently, Tung, Pavanello, and Adamowicz [136] have reported much
accurate calculations of the ground-state potential energy curve (PEC) of the LiH molecule
performed with all-electron ECG functions with shifted centers. The absolute accuracy of
the generated PEC is estimated as not exceeding 0.3 cm−1. Thus, in this paper, we fit the
accurate data of Tung, Pavanello, and Adamowicz [136]. The RMS for this fitting is 0.00045,
and the potential parameters are determined to be α = 0.590929935, β = 0.437032497, κ =
0.0488894485, and η = 11.33519.
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In Fig.1.7, we compare the fitted potential curve with three-parameter potential [100],
ab initio CCSD/6-311++G(3df, 2pd) calculation [100], RKR experimental data [137], and
accurate ECG calculations [136] for the ground state of LiH. Our fitted potential curve for
LiH except a slight difference at 6.5 < R < 9.5 agrees very well with experiment, accurate
ECG data, and CCSD. As shown in Fig.1.7(b), the four-parameter potential curve is improved
over the three-parameter potential [100].

We calculate the vibrational energies for isotopes 7LiH by using the four-parameter po-
tential. The computed vibrational energies are summarized in Table 1.7. In comparison with
experiment [137], our calculated energies by using the four-parameter potential are within the
relative error of 1% for ν = 0 ∼ 15 and of 1% to 40% for ν = 16 ∼ 21, respectively, and are
better than those calculated by using the three-parameter potential [100].

1.8. BeH

Beryllium monohydride, BeH, is a small heteronuclear radical. Because it consists of only two
nuclei and five electrons, the BeH radical is an attractive benchmark molecule for ab initio
methods. It has been the subject of numerous theoretical studies (see literature review by
Koput [139]). Its ground electronic state has been experimentally characterized [140]. In this
work, we fit the experimental data of Ref. [140]. The RMS of this fitting is 0.017, and the
potential parameters are determined to be α = 0.0439935564, β = 0.372280509, κ = 4.997,
and η = 0.93473275. Our fitted potential curve is reported in Fig.1.8, which agrees very well
with ab initio calculations [139] by using the multi-reference averaged coupled-pair functional
method in conjunction with the correlation-consistent core-valence basis sets up to septuple-
zeta quality.
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Fig.1.8 Comparison between four-parameter potential (this work) (Red line, α = 0.0439935564, β = 0.372280509, κ = 4.997,

η = 0.93473275), ab initio calculations by using the multi-reference averaged coupled-pair functional (MR-ACPF) method in

conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality (Green triangle, Ref. [139]), and

experimental data (dark filled circles, Ref. [140]) for the ground state of BeH.
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1.9. LiNa
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Fig.1.9: Comparison between 4-parameter potential (this work) (Red line, α = 0.153370182, β = 0.0750653157, κ = 0.225977753,

and η = 0.390468193), multiconfigurational quasi-degenerate perturbation theory (MCQDPT)(Green open circles, Ref. [141]), the

X-representation potential (X-Rep)derived from the Laser-induced fluorescence spectroscopy (Blue line, Ref. [142]), and experimen-

tal data (Dark filled circles, Ref. [141], using the simple and well-known extended-Rydberg form V (R) = −De

(
1 +

∑p

k=1
akρk

)
exp(−a1ρ),

where ρ = R−Re) for the ground state of LiNa.

The electronic structure of the LiNa molecule was investigated by spectroscopy for the first
time in 1971 and later extensively studied by experiment and theory (see the literature review
in the most recent work of Tiemann group [142]). In this work, we fit the experimental data of
Ref. [141]. The RMS of this fitting is 0.000671, and the potential parameters are determined
to be α = 0.153370182, β = 0.0750653157, κ = 0.225977753, and η = 0.390468193. The
fitted potential curve is reported in Fig.1.9, which agrees very well with multi-configurational
quasi-degenerate perturbation theory (MCQDPT) [141], X-representation potential (X-Rep)
derived from the Laser-induced fluorescence spectroscopy [142], and experimental data [141]

derived by using extended-Rydberg form ( V (R) = −De

(
1 +

∑p
k=1 akρ

k
)
exp(−a1ρ), where

ρ = R−Re). Calculated vibrational energies by using the four-parameter potential are listed
in Table 1.9. The relative errors of all computed vibrational energies are within less than 1%,
compared to experiment [143].

Table 1.9: Calculated vibrational energies for 7LiNa by using the four-parameter potential (α = 0.153370182, β = 0.0750653157,

κ = 0.225977753, and η = 0.390468193), where δ = |Theory − Experiment|/Experiment is the relative error of the present

calculation, compared to experiment [143].

ν this work Exp. δ ν this work Exp. δ ν this work Exp. δ ν this work Exp. δ
[cm−1] [cm−1] % [cm−1] [cm−1] % [cm−1] [cm−1] % [cm−1] [cm−1] %

0 0. 0. 0. 11 2595.237 2599.640 0.169 22 4736.697 4743.540 0.14 33 6303.601 6293.203 0.16
1 252.583 253.290 0.27 12 2810.002 2814.700 0.166 23 4905.352 4912.024 0.13 34 6410.347 6395.969 0.22
2 501.983 503.283 0.25 13 3020.979 3025.980 0.165 24 5069.222 5075.554 0.12 35 6509.993 6491.190 0.28
3 748.155 749.956 0.24 14 3228.098 3233.407 0.164 25 5228.180 5233.968 0.11 36 6602.134 6578.532 0.35
4 991.050 993.285 0.22 15 3431.288 3436.903 0.163 26 5382.086 5387.092 0.09 37 6686.290 6657.653 0.43
5 1230.620 1233.236 0.21 16 3630.473 3636.386 0.162 27 5530.793 5534.738 0.07 38 6761.877 6728.210 0.50
6 1466.814 1469.771 0.20 17 3825.572 3831.767 0.161 28 5674.138 5676.705 0.04 39 6828.166 6789.874 0.56
7 1699.579 1702.846 0.19 18 4016.503 4022.951 0.160 29 5811.946 5812.776 0.01 40 6884.204 6842.360 0.61
8 1928.862 1932.418 0.18 19 4203.177 4209.836 0.158 30 5944.022 5942.719 0.02 41 6928.660 6885.486 0.62
9 2154.605 2158.442 0.17 20 4385.501 4392.311 0.155 31 6070.154 6066.285 0.06 42 6959.451 6919.247 0.58
10 2376.751 2380.867 0.17 21 4563.376 4570.256 0.151 32 6190.102 6183.207 0.11
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1.10. InH

Here we report one example for the ground states of group III hydrides. We fit the ex-
perimentally determined potential data for the ground-state InH [144]. The RMS of this
fitting is 0.00148, and the potential parameters are determined to be α = 0.399432325,
β = 0.352975842, κ = 0.126597296, η = 21.6996589. The fitted potential curve is reported in
Fig.1.10, which agrees very well with experimentally-derived potential data [144] .
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Fig.1.10 Comparison between four-parameter potential (this work) (Red line, α = 0.399432325, β = 0.352975842, κ = 0.126597296,

η = 21.6996589), and experimentally-derived data (Dark filled circles, Ref. [144]) for the ground state of InH.

1.11. NO

Here we report one example for the ground-state potential of NO. We fit the accurate potential
energies determined by Huxley and Murrell [78]. The RMS of this fitting is 0.00221, and the
potential parameters are determined to be α = 0.255622994, β = 1.40313848, κ = 1.05129052,
η = 65.1143618. The fitted potential curve is reported in Fig.1.11, which agrees very well with
the accurate data [78]. To be noted, Rydberg-London potential shows a visible deviation from
the accurate data at R = 3 ∼ 4 Bohr.
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Fig.1.11 Comparison between four-parameter potential (this work) (Red line, α = 0.255622994, β = 1.40313848, κ = 1.05129052,

η = 65.1143618.), Rydberg-London potential (Blue line, a = 3809.497, b = 4.4196, c = 1.0943, d47.0, C6 = 11.245, Ref. [124] ), and

the accurate data (Dark filled circles, Ref. [78]) for the ground state of NO.
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1.12. HCl

Here we report the ground-state potential of HCl. We fit the accurate potential energies
determined by Huxley and Murrell [78]. The RMS of this fitting is 0.000907, and the potential
parameters are determined to be α = 0.52951669, β = 0.941428491, κ = 0.212878625, η =
42.6912765. The fitted potential curve is reported in Fig.1.12, which agrees very well with the
accurate data [78] .
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Fig.1.12 Comparison between four-parameter potential (this work) (Red line,α = 0.52951669, β = 0.941428491, κ = 0.212878625,

η = 42.6912765.), and the accurate data (Dark filled circles, Ref. [78]) for the ground state of HCl.

1.13. OH

Here we report the ground-state potential of OH. We fit the accurate potential energies de-
termined by Huxley and Murrell [78]. The RMS of this fitting is 0.0009356, and the poten-
tial parameters are determined to be α = 0.760387114, β = 1.40066201, κ = 0.20986805,
η = 39.6142444. The fitted potential curve is reported in Fig.1.13, which agrees very well with
the accurate data [78]. To be noted, Rydberg-London potential [124] is slightly deviated from
the accurate data at R = 3 ∼ 4 Bohr
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Fig.1.13 Comparison between four-parameter potential (this work) (Red line,α = 0.760387114, β = 1.40066201, κ = 0.20986805,

η = 39.6142444), Rydberg-London potential (Blue line, a = 377.804, b = 3.6909, c = 1.4668, d = 32.5, C6 = 6.854, Ref. [124] ) and

the accurate data (Dark filled circles, Ref. [78]) for the ground state of OH.
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1.14. NH

Here we report the ground-state potential of NH. We fit the accurate potential energies de-
termined by Huxley and Murrell [78]. The RMS of this fitting is 0.000841, and the poten-
tial parameters are determined to be α = 0.641300128, β = 1.05082101, κ = 0.269776121,
η = 27.3461228. The fitted potential curve is reported in Fig.1.14, which agrees very well with
the accurate data [78] .
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Fig.1.14 Comparison between four-parameter potential (this work) (Red line,α = 0.641300128, β = 1.05082101, κ = 0.269776121,

η = 27.3461228), and the accurate data (Dark filled circles, Ref. [78]) for the ground state of NH.

1.15. CH

Here we report the ground-state potential of CH. We fit the accurate potential energies de-
termined by Huxley and Murrell [78]. The RMS of this fitting is 0.000841, and the potential
parameters are determined to be α = 0.706575916, β = 0.980984516, κ = 0.158091171,
η = 33.8165879. The fitted potential curve is reported in Fig.1.15, which agrees very well with
the accurate data [78] .
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Fig.1.15 Comparison between four-parameter potential (this work) (Red line, α = 0.706575916, β = 0.980984516, κ = 0.158091171,

η = 33.8165879), and the accurate data (Dark filled circles, Ref. [78]) for the ground state of CH.
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1.16. CO

Here we report the ground-state potential of CO. We fit the accurate potential energies de-
termined by Huxley and Murrell [78]. The RMS of this fitting is 0.003586, and the poten-
tial parameters are determined to be α = 0.602412105, β = 2.49790792, κ = 0.23540789,
η = 160.846731. The fitted potential curve is reported in Fig.1.16, which agrees very well with
the accurate data [78] .
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Fig.1.16 Comparison between four-parameter potential (this work) (Red line,α = 0.602412105, β = 2.49790792, κ = 0.23540789,

η = 160.846731), and the accurate data (Dark filled circles, Ref. [78]) for the ground state of CO.

1.17. Si2

Here we report the ground-state potential of Si2. We fit the accurate potential energies de-
termined by Huxley and Murrell [78]. The RMS of this fitting is 0.00181, and the potential
parameters are determined to be α = 0.186283078, β = 0.325358609, κ = 0.359889161,
η = 47.3860134. The fitted potential curve is reported in Fig.1.17, which agrees very well with
the accurate data [78] .
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Fig.1.17 Comparison between four-parameter potential (this work) (Red line, α = 0.186283078, β = 0.325358609, κ = 0.359889161,

η = 47.3860134 ), and the accurate data (Dark filled circles, Ref. [78]) for the ground state of Si2.
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1.18. SiO

Here we report the ground-state potential of SiO. We fit the accurate potential energies de-
termined by Huxley and Murrell [78]. The RMS of this fitting is 0.0021, and the poten-
tial parameters are determined to be α = 0.520285935, β = 1.50404553, κ = 0.151927384,
η = 250.018351. The fitted potential curve is reported in Fig.1.18, which agrees very well with
the accurate data [78] .
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Fig.1.18 Comparison between four-parameter potential (this work) (Red line,α = 0.520285935, β = 1.50404553, κ = 0.151927384,

η = 250.018351 ), and the accurate data (Dark filled circles, Ref. [78]) for the ground state of SiO.
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2. Covalent Bonding: Ionic Systems

The proposed potential function for ionic covalent bonding systems is

V (R, α, β, γ, η, ζ, χ) =
J1(R, γ, ζ, η) + K1(R,α, ζ, β)

1 + S0(R)
− I(R, Re, χ)

C4

R4
(2)

with J1(R, γ, ζ, η) = e−2γR
(

ζ
R

+ η
)
, K1(R,α, ζ, β) = e−αR

(
ζ
R
− βR

)
, S0(R) = e−R

(
1 + R + R2

3

)
,

and I(R,Re, χ) = N(R/Re)
(
1− e−( R

χRe
)5

)
, where N(R/Re) is a sign function defined as: (i)

N(R/Re) = +1 for R/Re ≥ 10−3 and (ii) N(R/Re) = −1 for R/Re < 10−3.

2.1. H+
2

H+
2 is the simplest one-electron molecule. For this one-electron system, the self-interaction-

free Hartree-Fock method is exact (apart from small basis set errors) [146]. In other words,
the potential energy curve for the ground-state H+

2 should approach the exact solution in the
limit of infinite basis set size [146]. That is, if one increases the basis set size (for example,
including polarization and even diffuse functions in the trial function), then the potential
curve of the ground-state H+

2 should be improved significantly in all the regions of R [100].
In Fig.2.1, we demonstrate the effect of basis set size by using Hartree-Fock (HF) method
implemented in the Gaussian 09 electronic structure package [119]. It is seen that the numerical
potential curve for the ground-state H+

2 , especially in the large-R region, is greatly improved
and approaching to the accurate data [145] as the basis size is increased from Gaussian-
type basis set 6-311++G(3df, 2pd) ( including 2p and 1d polarization functions and diffuse
functions) to aug-cc-pV5Z [119].

In this work, we use the new potential function given by Eq.(2) to fit the HF/aug-cc-
pV5Z data. The root-mean-square for this fitting is 0.023, and the potential parameters are
determined to be α = γ/2 = 1.06464516, β = 0.921196022, η = 3.61038634, ζ = 1, χ = 2.572,
and C4 = 4.95628851. The fitting results are presented in Figure 2.1, and Table 2.1A list
specified potential energies and compare with the polarization calculation [125], HF results,
and accurate data [145]. We find that the fitted results reach an accuracy of less than 5% in
the well and large-R regions, compared to the exact value [145]. In the repulsive region, the
large error is 6.21% at R=0.6 Bohr. For R > 4 Bohr, the fitted results are much better than
HF/6-311++G(3df, 2pd) calculations, and slightly better than the second-order polarization
calculations [125]. As shown in Fig.2.1(a) and (c), the new potential is superior to the three-
parameter potential [100].

We calculate the vibrational energies for the ground state H+
2 using the new potential

function. The numerical results are summarized in Table 2.1B. In total, we have obtained 20
vibrational levels as reported in Ref. [147]. The relative error of calculated vibrational energies
except the last two levels are less than 2% for the levels ν = 0− 18, compared to the accurate
data [147].
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Fig.2.1 Comparison between new derived potential curve (this work) (Red line, α = γ/2 = 1.06464516, β = 0.921196022, η =

3.61038634, ζ = 1, χ = 2.572, C4 = 4.95628851, Re = 2.0 ), 3-parameter (Dark line, Ref. [100], α = 1.5065756, β = 2.48475652,

γ = 1.45 ), HF/6-311++G(3df, 2pd) ( Blue line, Ref. [100]), HF/aug-cc-pV5Z (Green open circles), and the most accurate data

(Dark filled circles, Ref. [145]) for the ground state of one-electron molecule H+
2 : (a) Repulsive region (0.08 ∼ 1 Bohr); (b)

Intermediate-R region ( 1 ∼ 5 Bohr); (c) Large-R region (5 ∼ 10 Bohr).
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Table 2.1A: Comparison of the potential energies of the ground-state H+
2 derived from the potential function Eq.(2) (this work,

α = γ/2 = 1.06464516, β = 0.921196022, η = 3.61038634, ζ = 1, χ = 2.572, Re = 2.0, and C4 = 4.95628851) with accurate

data [145] and Hartree-Fock calculations with two basis sets: aug-cc-pV5Z, and 6-311++G(3df, 2pd) [100]. The value in the

parenthesis is the relative error of the calculations, compared to the accurate values [145]. Energies and R are in atomic units

R Perturbation New Potential Hartree-Fock Hartree-Fock Exact
Ref. [125] this work 6-311++G(3df, 2pd) (Ref. [100]) aug-cc-pV5Z Ref. [145]

0.2 - 3.4730288 (2.75%) 3.5901913 (0.529% ) 3.5731717 (0.053%) 3.5712900
0.4 - 1.1400419 (4.93%) 1.2073537 (0.679% ) 1.2001408 (0.078%) 1.1992100
0.6 - 0.4643997 (6.21%) 0.4986432 (0.704% ) 0.4956841 (0.106%) 0.4951567
1.0 0.04761 (1.2%) 0.0453453 (5.95%) 0.0493841 (2.427% ) 0.0484139 (0.415%) 0.0482137
1.4 - -0.0669892 (4.28%) -0.0692730(1.016% ) -0.0698991 (0.122%) -0.0699843
1.5 - -0.0793424 (3.62%) -0.0816883(0.768% ) -0.0822257 (0.115%) -0.0823205
1.6 - -0.0882363 (2.96%) -0.0903713(0.614% ) -0.0908854 (0.049%) -0.0909300
1.8 - -0.0985239 (1.73%) -0.0998017(0.452% ) -0.1002250 (0.029%) -0.1002544
2.0 -0.1047 (2.0%) -0.1020067 (0.61%) -0.1022567(0.368% ) -0.1026223 (0.012%) -0.1026342
2.2 - -0.1011692 (0.50%) -0.1004950(0.168% ) -0.1008402 (0.175%) -0.1006645
2.5 - -0.0951008 (1.36%) -0.0934593(0.388% ) -0.0938368 (0.014%) -0.0938235
3.0 -0.07880 (1.6%) -0.0792120 (2.13%) -0.0770038(0.721% ) -0.0775846 (0.028%) -0.0775629
3.5 - -0.0620632 (1.98%) -0.0599103(1.553% ) -0.0608764 (0.034%) -0.0608555
4.0 -0.04716 (2.3%) -0.0467328 (1.41%) -0.0446260(3.166% ) -0.0460988 (0.030%) -0.0460849
4.5 - -0.0342146 (0.81%) -0.0320165(5.667% ) -0.0339435 (0.010%) -0.0339400
5.0 -0.02431 (0.5%) -0.0245167 (0.39%) -0.0222976(8.692% ) -0.0244142 (0.025%) -0.0244203
5.5 - -0.0172460 (0.08%) -0.0152165(11.694% ) -0.0172195 (0.070%) -0.0172315
6.0 -0.01162 (2.9%) -0.0119251 (0.37%) -0.0102342(14.494% ) -0.0119545 (0.121%) -0.0119690
6.5 - -0.0081250 (1.10%) -0.0068055(17.163% ) -0.0082005 (0.183%) -0.0082155
7.0 -0.005365 (4.1%) -0.0054842 (1.96%) -0.0044778(19.954% ) -0.0055797 (0.256%) -0.0055940
7.5 - -0.0036941 (2.61%) -0.0029110( 23.253%) -0.0037800 (0.343%) -0.0037930
8.0 -0.002453 (4.5%) -0.00249938 (2.76%) -0.0018637(27.494% ) -0.0025590 (0.444%) -0.0025704
8.5 - -0.00170690 (2.31%) -0.0011689(33.099% ) -0.0017371 (0.578%) -0.0017472

Table 2.1B: Comparison of the vibrational energies for the ground state of H+
2 calculated using the newly derived potential

function (this work)( α = γ/2 = 1.06464516, β = 0.921196022, η = 3.61038634, ζ = 1, χ = 2.572, Re = 2.0, and C4 = 4.95628851).

The relative error of the calculation is compared to the most accurate data [147]. Energies in atomic units.

ν This Work Accurate (Ref. [147]) Relative Error ν This Work Accurate (Ref. [147]) Relative Error
0 -0.0970873714 -0.097411224 0.33% 10 -0.0220911119 -0.02197053 0.54%
1 -0.0873931237 -0.08742784 0.039% 11 -0.0173629703 -0.017272526 0.52%
2 -0.0781750154 -0.078024065 0.19% 12 -0.0131588616 -0.013097364 0.46%
3 -0.0694364449 -0.069180659 0.36% 13 -0.0094885994 -0.009458409 0.31%
4 -0.0611815207 -0.060881381 0.49% 14 -0.00637083681 -0.006373841 0.05%
5 -0.053414961 -0.05311291 0.56% 15 -0.00383761848 -0.003867245 0.76%
6 -0.0461419369 -0.045864811 0.60% 16 -0.0019329211 -0.001967934 1.77%
7 -0.0393678527 -0.039129547 0.60% 17 -0.000697408025 -0.000709201 1.66%
8 -0.0330980705 -0.03290254 0.59% 18 -0.000127254906 -0.000109593 16.11%
9 -0.0273376297 -0.027182285 0.57% 19 -8.9138042E-6 -3.391E-6 162.86%

2.2. HeH+

Formed by the most abundant elements, the hydrohelium, HeH+, plays an important role
in astrophysics. According to the standard Big Bang model, the helium hydride ion, HeH+,
is the first molecule, along with He+

2 , formed in the Universe. This HeH+ is a relatively
simple hetero-nuclear molecular ion, isoelectronic with H2, which makes it of a fundamental
significance from the theoretical point of view. The first accurate variational calculations
of the Born-Oppenheimer potential of HeH+ was reported by Wolniewicz [148], and then
refined by Kolos and Peek [149] and further by Bishop and Cheung [149]. To date, there
have been extensive quantum chemical calculations on this system (see literature review in

22



Ref. [150, 151]). In the ground electronic state, both electrons are mostly centered around
the α nucleus with the proton distance from α being about R ≈ 1.46 Bohr. Very recently,
Pachucki [151] has demonstrated high accuracy calculations for the the ground state of HeH+

using analytic formulas for two-center two-electron integrals with exponential functions (The
potential is obtained in the range of 0.1∼60 a.u. with precision of about 10−12 a.u.).
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Fig.2.2. The comparison between new potential curve (this work) (Red line, α = γ = 1.94869912, β = 2.60094136, ζ =

2.04347269, η = 1.78190656, C4 = 0.709265297, χ = 2.64764358, and Re = 2.042 ), CCSD/aug-cc-pV5Z ( green line or crossing),

3-parameter model potential (blue line, α = 2.087114, β = 3.54492339, and γ = 1.0, Ref. [100]), and the most accurate data (dark

filled circles, Ref. [151]) for the ground state of HeH+: (a) Repulsive region; (b)Attractive region and (c) Enlarged part.

In this work, we first compute the PEC of the ground state of HeH+ using CCSD/aug-
cc-pV5Z and then fit it using the new potential function given by Eq.(2). The RMS for this
fitting is 0.0003, and the potential parameters are determined to be α = γ = 1.94869912,
β = 2.60094136, ζ = 2.04347269, η = 1.78190656, C4 = 0.709265297, and χ = 2.64764358.
Since C4 = α1/2, the dipole polarizability of He atom is derived to be α1 = 2C4 = 1.418530594,
which agrees well with the literature value (α1 = 1.3796) [152]. The fitting results are presented
in Figure 2.2. The fitted PEC except a slight deviation at R = 4 ∼ 6 Bohr shown in Fig.2.2(c)
overlap very well with CCSD/aug-cc-pV5Z data points and the most accurate data [151]. The
new potential curve is greatly improved over the three-parameter potential curve [100] in the
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repulsive and attractive regions. Then, we calculate the vibrational energies for the ground
state HeH+, and the numerical results are summarized in Table 2.2. In total, we have obtained
12 vibrational levels as reported in Ref. [150,153]. The relative error of calculated vibrational
energies by using the present fitted potential are less than 2% for all the levels ν = 0 − 11,
compared to the accurate data [151].

Table 2.2: Comparison of the vibrational energies for the ground state of HeH+ calculated using the new potential (this work)

( α = γ = 1.94869912, β = 2.60094136, χ = 2.04347269, η = 1.78190656, C4 = 0.709265297, ζ = 2.64764358, and Re = 2.042 ).

The relative error of the calculation is compared to the most accurate data [153]. Energies in cm−1

ν This Work Accurate (Ref. [153]) Relative Error ν This Work Accurate (Ref. [153]) Relative Error
0 0. 0. 0. 6 12553.3559 12781.3485 1.78%
1 2868.9228 2911.0174 1.45% 7 13563.0243 13765.8454 1.47%
2 5422.8349 5515.2227 1.68% 8 14250.4013 14405.1903 1.07%
3 7666.1656 7810.8577 1.85% 9 14607.3517 14732.6855 0.85%
4 9601.9423 9792.9915 1.95% 10 14722.6704 14848.9097 0.85%
5 11231.4052 11453.4425 1.94% 11 14748.7441 14873.3489 0.84%

2.3. He+
2

Helium is chemically the least reactive of all of the elements, yet a variety of small helium-
containing molecules are known to exist as long-lived or even stable species. These include
HeH+, He2, He+

2 , and He++
2 . Although not very common in the laboratory, many of these

molecules are considered to be of astrophysical interest due to the abundance of helium in
stellar atmospheres and in interstellar clouds. In this work, we use the new potential function
given by Eq.(2) to fit the accurate potential data of the ground-state He+

2 [154]. The RMS for
this fitting is 0.0006, and the potential parameters are determined to be α = γ/2 = 1.5047139,
β = 2.38355439, χ = 0.979471616, η = 1, C4 = 0.624816071, and ζ = 5.25975522. The
fitting potential curve is presented in Figure 2.3, and some numerical data are listed in Table
2.3A. The fitted potential curve except a slight deviation at R = 10 ∼ 15 Bohr as shown in
Fig.2.3(c) agrees very well with the accurate data [154], and is greatly improved over the three-
parameter potential [100]. To be noted, CCSD/aug-cc-pV5Z results show a large deviation in
the large-R region, which needs to be improved by increasing the basis size. The calculated
vibrational energies for the ground state He+

2 are summarized in Table 2.3B. The relative
errors of calculated vibrational energies are less than 1% for the levels ν = 0 − 19 and 2.8%
to 37.3% for the levels ν = 20− 23, respectively , compared to the accurate data [154].
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Fig.2.3 Comparison between new potential (this work) (Red line, α = γ/2 = 1.5047139, β = 2.38355439, χ = 0.979471616,

Re = 2.042, η = 1, C4 = 0.624816071, and ζ = 5.25975522 ), CCSD/aug-cc-pV5Z ( Green line or crossing), 3-parameter model

potential (Blue line, α = 1.28869, β = 2.99846884, and γ = 0.425, Ref. [100]), and the most accurate data (Dark filled circles,

Ref. [154]) for the ground state of He+2 : (a) Repulsive region; (b) Attractive region R = 1 ∼ 6 Bohr; (c) Attractive region

R = 6 ∼ 10 Bohr.

Table 2.3A: Comparison of the potential energies for the ground state of He+2 calculated using the new potential function (this

work, α = γ/2 = 1.5047139, β = 2.38355439, χ = 0.979471616, Re = 2.042, η = 1, C4 = 0.624816071, and ζ = 5.25975522 ) with

the most accurate data [154]. Energies and R in atomic units.

R Accurate (Ref. [154]) this work R Accurate (Ref. [154]) this work
1.0 0.33268553 0.33268553 8.0 -0.00029280 -0.000260380
2.0 -0.09071740 -0.09111106 9.0 -0.00014135 -0.00012253

2.042 -0.09091977 -0.09142858 10.0 -0.00007999 -0.00006927
3.0 -0.05207816 -0.05154927 11.0 -0.00005077 -0.00004434
4.0 -0.01906935 -0.01925196 12.0 -0.00003466 -0.00003054
5.0 -0.00624850 -0.00635248 13.0 -0.00002478 -0.00002197
6.0 -0.00204495 -0.00202021 14.0 -0.00001830 -0.00001629
7.0 -0.00072159 -0.00067553 15.0 -0.00001383 -0.00001235
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Table 2.3B: Comparison of the vibrational energies for the ground state of He+2 calculated using the new potential function

(this work, α = γ/2 = 1.5047139, β = 2.38355439, χ = 0.979471616, Re = 2.042, η = 1, C4 = 0.624816071, and ζ = 5.25975522

). The relative error of the calculation is compared to the most accurate data [154]. Energies in atomic units.

ν This Work Accurate Data Relative Error ν This Work Accurate Data Relative Error
0 -19205.644 -19116.116 -0.46% 12 -4221.761 -4251.373 0.69%
1 -17530.169 -17487.736 -0.24% 13 -3462.459 -3481.539 0.54%
2 -15929.625 -15929.598 -0.0002% 14 -2776.027 -2786.413 0.37%
3 -14407.352 -14441.8 0.23% 15 -2162.875 -2166.882 0.18%
4 -12965.168 -13024.465 0.45% 16 -1623.707 -1623.937 0.01%
5 -11603.388 -11677.751 0.63% 17 -1159.549 -1158.654 -0.07%
6 -10321.169 -10401.852 0.77% 18 -771.781 -772.152 0.04%
7 -9117.054 -9197.012 0.86% 19 -462.147 -465.491 0.71%
8 -7989.480 -8063.526 0.91% 20 -232.690 -239.384 2.79%
9 -6937.073 -7001.752 0.92% 21 -85.1730 -93.34 8.74%
10 -5958.767 -6012.117 0.88% 22 -17.0682 -22.159 22.97%
11 -5053.811 -5095.127 0.81% 23 -1.826 -2.914 37.31%

2.4. BeH+
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Fig.2.4 The comparison between new potential (Red line, this work, α = γ = 1.19634826, β = 1.41938735, χ = 1.18705107,Re =

2.476, η = 18.5564204, C4 = 3.13563906, and ζ = 0.122559941 ) and the most accurate data (Dark filled circles, Ref. [155]) for

the ground state of BeH+.

Although neutral beryllium monohydride (BeH) has attracted considerable experimental
and theoretical interest, little is known about its ions (see literature review in a recent paper
of Koput [155]). The vibration-rotation energy levels of the BeH cation, BeH+, in its ground
electronic state were experimentally characterized up to about 2/3 of the dissociation limit.
Very recently, Koput has performed a very accurate calculation on the ground-state potential
energy of BeH+ by using the multi-reference averaged coupled-pair functional (MR-ACPF)
method in conjunction with the correlation-consistent core-valence basis sets up to septuple-
zeta quality. In this work, we use the new potential function given by Eq.(2) to fit the accurate
data of Koput [155]. The RMS for this fitting is 0.000691, and the potential parameters are
determined to be α = γ = 1.19634826, β = 1.41938735, χ = 1.18705107, η = 18.5564204,
C4 = 3.13563906, and ζ = 0.122559941. The fitted potential curve is presented in Figure 2.4.
It agrees well with the accurate data [155]. In Table 2.4, we listed the computed vibrational
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energies for the ground state of BeH+ using the fitted potential. The relative errors for all the
computed energies, compared to experiment [156], are less than 1%.

Table 2.4.: Comparison of the vibrational energies for the ground state of BeH+ calculated by using the fitted potential

(this work) ( α = γ = 1.19634826, β = 1.41938735, χ = 1.18705107, Re = 2.476, η = 18.5564204, C4 = 3.13563906, and

ζ = 0.122559941). The relative error of the calculation is compared to the experimental data [155]. Energies in cm−1.

ν This Work Exp.(Ref. [156]) Relative Error ν This Work Exp. (Ref. [156]) Relative Error
0 0. 0. 0.% 6 11664.294 11601.723 0.53%
1 2134.680 2140.097 0.25% 7 13305.207 13236.008 0.52%
2 4198.855 4199.289 0.01% 8 14844.418 14779.843 0.43%
3 6188.898 6176.402 0.20% 9 16277.216 16230.761 0.28%
4 8100.181 8070.164 0.37% 10 17600.128 17585.969 0.086%
5 9927.284 9879.148 0.48%

2.5. BeH−

−0.08

−0.06

−0.04

−0.02

 0

 0.02

 0.04

 2  4  6  8  10

V
 (

H
ar

tr
ee

)

R (Bohr)

Accurate
this work

Fig.2.5 The comparison between new potential (this work) (Red line, α = γ = 1.16789295, β = 1.18495346, χ = 2.17836477,

Re = 2.669, η = 12.6045998, C4 = 18.4984266, and ζ = 1.26131762 ) and the accurate data (dark filled circles, Ref. [155]) for the

ground state of BeH−.

Neutral beryllium monohydride (BeH) and its cation were experimentally characterized.
In contrast, there is no experimental information available about properties of the BeH anion,
except for the adiabatic electron affinity of the BeH molecule. Nevertheless, very recently,
Koput has performed a very accurate calculation on the ground-state potential energy of
BeH− by using the multi-reference averaged coupled-pair functional (MR-ACPF) method in
conjunction with the correlation-consistent core-valence basis sets up to septuple-zeta quality.
The predicted vibration-rotation energy levels for the BeH anion can be useful in a future
experimental detection of this species. In this work, we use the new potential function given
by Eq.(2) to fit the accurate data of Koput [155]. The RMS for this fitting is 0.0001115,
and the potential parameters are determined to be α = γ = 1.16789295, β = 1.18495346,
χ = 2.17836477, η = 12.6045998, C4 = 18.4984266, and ζ = 1.26131762. The fitting potential
curve is presented in Figure 2.5. It agrees well with the accurate data [155]. In Table 2.5, we
listed the computed vibrational energies for the ground state of BeH− using the fitted potential.
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The relative errors for all the energies, compared to accurate theoretical calculation [155], are
less than 0.5%.

Table 2.5.: Comparison of the vibrational energies for the ground state of BeH− calculated by using the new potential (this

work)(α = γ = 1.16789295, β = 1.18495346, χ = 2.17836477, Re = 2.669, η = 12.6045998, C4 = 18.4984266, and ζ = 1.26131762).

The relative error of the calculation is compared to the accurate theoretical data [155]. Energies in cm−1.

ν This Work Theory (Ref. [155]) Relative Error
0 0. 0. 0.%
1 1551.51 1549.84 0.10%
2 3003.25 2997.78 0.18%
3 4355.60 4344.74 0.25%
4 5609.04 5592.09 0.30%
5 6764.29 6741.84 0.33%

2.6. LiH−

As the simplest stable molecular anion, LiH− was the focus of several theoretical studies in-
volving a variety of techniques during the year 1975 to 1978 [158]. Later, it was extensively
studied both theoretically and experimentally (see Table I and literature review in Ref. [157]).
The Gellene group [157] has performed a very accurate calculation on the ground-state poten-
tial energy of LiH− by using multi-reference configuration interaction in the single and double
space (MRCISD). In this work, we use the new potential function given by Eq.(2) to fit the
accurate potential data of the ground-state LiH− [157]. The RMS for this fitting is 0.0001115,
and the potential parameters are determined to be α = γ = 0.981753027, β = 0.981349042,
χ = 2.39811679, η = 1, C4 = 64.6224785, and ζ = 3.6729584. The fitting potential curve is
presented in Figure 2.6. It agrees well with the accurate data [157].
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Fig.2.6 The comparison between new potential (this work) (Red line, α = γ = 0.981753027, β = 0.981349042, χ = 2.39811679,

Re = 3.153, η = 1, C4 = 64.6224785, and ζ = 3.6729584 ), configuration interaction (CI) calculations (Green triangle, Ref. [158])

, multi-reference configuration interaction in the single and double space (MRCISD) (Dark filled circles, Ref. [157]) for the ground

state of LiH−.
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3. Ionic Bonding Systems

The proposed potential function for the ionic bonding systems is

V (R,α, β, γ, η, ζ, χ) =
J1(R, γ, ζ, η) + K1(R, α, ζ, β)

1 + S0(R)
− I(R, Re, χ)

[
Z2

R

+
C4

R4
+

C6

R6
+

C7

R7

]
(3)

with J1(R, γ, ζ, η) = e−2γR
(

ζ
R

+ η
)
, K1(R,α, ζ, β) = e−αR

(
ζ
R
− βR

)
, S0(R) = e−R

(
1 + R + R2

3

)
,

and I(R,Re, χ) = N(R/Re)
(
1− e−( R

χRe
)5

)
, where N(R/Re) is a sign function defined as: (i)

N(R/Re) = +1 for R/Re ≥ 10−3 and (ii) N(R/Re) = −1 for R/Re < 10−3. Z is the charge
number. C4, C6 and C7 are related to the polarizabilities of the ions and are available in the
literature.

3.1. NaCl
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Fig.3.1. The comparison between the new potential (this work) (Red line, α = γ/2 = 0.449611907, β = 0.130590627,

η = 125.509261, χ = 7.29009261, Re = 4.4628, C4 = 2.09988569 × 10−6, C6 = 2008637.94, C7 = 99999986.1, ζ = 1 ) and the

experimental data (Dark filled circles, Ref. [159]) for the ground state of NaCl.

In this work, we fit the experimentally-determined potential [159] of the ground state of
NaCl. We take C4, C6, and C7 as fitting parameters. The RMS for this fitting is 0.00248,
and the determined potential parameters are α = γ

2
= 0.449611907, β = 0.130590627, η =

125.509261, χ = 7.29009261, C4 = 2.09988569 × 10−6, C6 = 2008637.94, C7 = 99999986.1,
ζ = 1. As shown in Fig.3.1., the fitted curve agrees well with experiment [159]. We compute
the vibrational energies for isotopes Na35Cl and Na37Cl and obtain in total, 463 and 467
vibrational levels, respectively. Table 3.1 compares the computed vibrational energies with
experimentally-determined ones. It is found that our computed vibrational energies are in
good agreement with experiment [159].
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Table 3.1: The calculated vibrational energies for isotopes Na35Cl ( in total, 463 levels, up to
ν = 462) and Na37Cl ( in total, 467 levels, i.e., up to ν = 466) using the model potential (α =
γ/2 = 0.449611907, β = 0.130590627, η = 125.509261, χ = 7.29009261, Re = 4.4628, C4 =
2.09988569E − 006, C6 = 2008637.94, C7 = 99999986.1, ζ = 1), compared to the energies deter-
mined in experiment [159].

Na35Cl Na37Cl
ν this work Exp. ν this work Exp.

[cm−1] [cm−1] [cm−1] [cm−1]
0 0 0 0 0 0
1 362.464 361.15111 1 358.595 357.29437
2 721.667 718.80343 2 713.996 711.16501
3 1077.631 1072.99164 3 1066.229 1061.6469
4 1430.381 1423.75018 4 1415.316 -
5 1779.941 1771.11401 5 1761.281 -
6 2126.335 2115.11780 6 2104.144 -
7 2469.587 2455.79490 7 2443.932 -
8 2809.720 2793.17600 8 2780.666 -
9 3146.759 - 9 3114.369 -

4. van der Waals Binding Systems

The proposed potential function for the non-covalent van der Waals binding systems is

V (R, α, β, η, χ) =
J1(R, α, η) + K1(R, α, β)

1 + S0(R)
− I(R,Re, χ)

∞∑
n

Cn

Rn
(4)

with J1(R, α, η) = e−αR
(

1
R

+ η
)
, K1(R, α, β) = e−αR

(
1
R
− βR

)
, S0(R) = e−R

(
1 + R + R2

3

)
,

and I(R,Re, χ) = N(R/Re)
(
1− e−( R

χRe
)5

)
, where N(R/Re) is a sign function defined as: (i)

N(R/Re) = +1 for R/Re ≥ 10−3 and (ii) N(R/Re) = −1 for R/Re < 10−3.

4.1. Triplet States

4.1.1. H2

This is the only system for which an exact ab initio potential is available within the Born-
Oppenheimer approximation. We use Eq.(4) and the dispersion coefficient of Ref. [80] to fit
the exact potential energies of Kolos and Wolniewicz [160]. The RMS of this fitting is 0.00704,
and the potential parameters are determined to be α = 1.80886753, β = 0.80476915, η =
19.5353848, and χ = 0.94375137. In Fig.4.1.1, we compared the fitted potential curve with the
exact ab initio results of Kolos and Wolniewicz [160], Tang-Toennies potential (TT1984) [80],
perturbation calculation (TTY1994) [161], and three-parameter model potential [100]. The
fitted potential curve is in excellent agreement with the exact ab initio data and perturbation
calculation. In the short-R range and in the large-R region, the present potential is greatly
improved over the three-parameter potential [100]. To be noted, in the repulsive region at
R < 6 Bohr, the TT1984 Potential [80] is much harder than the exact potential curve.
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Fig.4.1.1: Comparison between the present potential curve (this work) (Red line, α = 1.80886753, β = 0.80476915, η =

19.5353848, χ = 0.94375137, Re = 7.8, C6 = 6.499, C8 = 124.4, and C10 = 3286.0 ), three-parameter model potential (Dark line,

α = 0.978, β = 0.02228, and γ = 0.874, Ref. [100]), perturbation calculation (TTY1994)( Dark cross, Ref. [161]), Tang-Toennies

potential (TT1984) (Blue line , A= 9.3, b=1.664, C6 = 6.499, C8 = 124.4, and C10 = 3286.0 Ref. [80]), and exact data (Green

filled circles, Ref. [160]) for the triplet H2(3
∑

u
) state. (a) Repulsive region (Energy in log scale) and (b) attractive region.

4.1.2. NaK
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Fig.4.1.2 Comparison of the triplet-state a 3
∑+

of NaK of the present work (this work) (Red line, α = 0.581007114,

β = 0.169441107, η = 1.27758572, χ = 1.86032252, Re = 10.315, C6 = 2410.0, C8 = 229050.0, and C10 = 24680000.0 ) with

Tang-Toennies potential (Blue line, A = 3.829, b = 0.7573,C6 = 2410.0, C8 = 229050.0, C10 = 24680000.0, C12 = 3.015 × 109,

C14 = 4.175× 1011, C16 = 6.555× 1013 Ref. [80]) and experimental RKR points [162].

The 3 ∑+ states of the alkali dimers are another chemically different class of systems which
can be used to test the potential models. Breford and Engelke [162] observed laser-induced
fluorescence from the 3Π1 state into the a 3 ∑+ state in NaK and determined an RKR potential
up to high energies very close to the dissociation limit for a 3 ∑+. Thus, we fit their RKR
data points by using the potential function Eq.(4) and the dispersion coefficients C6 = 2410.0,
C8 = 229050.0, and C10 = 24680000.0 of Ref. [80]. The RMS for this fitting is 0.00928,
and the potential parameters are determined to be α = 0.581007114, β = 0.169441107, η =
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1.27758572, χ = 1.86032252. The fitted potential curve is presented in Fig.4.1.2. It agrees well
with the RKR data points. To be noted, as shown in Fig.4.1.2(b), Tang-Toennies potential
shows obvious deviations from the RKR data at R = 18 ∼ 25 Bohr.

4.2.Rare-Gas Dimers

4.2.1. He2
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Fig.4.2.1: The comparison between the present potential (Red line, this work, α = 2.34281426, β = 1.427609211, η =

24.9327859, χ = 0.705917281, Re = 5.613, c6 = 1.461, c8 = 14.11, c10 = 183.5), three-parameter potential (XG2005) (Dark

line, α = 1.313, β = 0.04200863, γ = 1.4, Ref. [100]), Tang-Toennies potential (TT1984)( Blue line, A = 22.16, b = 2.388,

c6 = 1.461, c8 = 14.11, c10 = 183.5, Ref. [80]), quantum Monte Carlo calculation (ATB1993)(Red star, Ref. [168]), LM2M2

potential (AS1991) (Cyan triangle, Ref. [167]), variational LM2 (LM1989) ( Blue cross, Ref. [166]), Tang-Toennies-Yiu potential

(TTY1995) (Green open circle, D = 7.449, β = 1.3443, c6 = 1.461, c8 = 14.11, c10 = 183.5 , Ref. [90]), and experimental data

(Dark filled circles, Ref. [165]) for the ground-state He2. (a) R = 1.5 ∼ 5 Bohr (Energy in log scale); (b)R = 5 ∼ 15 Bohr; and

(c)R = 8 ∼ 12 Bohr;.

The interatomic potentials between members of the rare gas family of atoms provide the
largest class of chemically identical atoms which interact via van der Waals potentials [163].
He2 is probably the atom-atom system which has been studied most extensively, both the-
oretically and experimentally. Two very accurate refined potentials based on the combined
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evaluation of both bulk and molecular beam scattering data were proposed by Aziz and co-
workers [164] and Feltgen and co-workers [165]. Having only four electrons in closed shells,
He2 is ideally suited for a theoretical study.

Here we fit the accurate potential data of the ground-state He2 [167] by using the potential
function Eq.(4) and the dispersion coefficients c6 = 1.461, c8 = 14.11, c10 = 183.5 of Ref. [80].
The RMS for this fitting is 0.00134, and the potential parameters are determined to be α =
2.34281426, β = 1.427609211, η = 24.9327859, and χ = 0.705917281. The results are reported
in Fig.4.2.1 and compared with literature data. We find that the new potential curve in
the short- and large-R regions has been greatly improved over the three-parameter potential
curve [100]. At all the intraction regions, the new potential curve is in excellent agreement
with experiment [165] and calculations of Tang-Toennies-Yiu [169], variational LM-2 [166],
and LM2-M2 [167] potentials, and quantum Monte Carlo [168]. For R < 3.5 Bohr, we find
that Tang-Toennies potential [80] is slightly harder than the experimental curve.

4.2.2. Ne2
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Fig.4.2.2 Comparison of the ground-state potential curve of Ne2 of the present work (this work) (Red line, α = 2.57804505,

β = 3.59526654, η = 302.992153, χ = 0.898113069, Re = 5.840, C6 = 6.383, C8 = 90.34, and C10 = 1536.0 ) with HFD-B

experimental data (Dark filled circles, Ref. [171]), Tang-Toennies potential curve (Green line, A = 951.8, b = 1.681, C6 = 6.383,

C8 = 90.34, and C10 = 1536.0, Ref. [175]).
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Aziz and Slaman [171] constructed an accurate potential energy curve for the ground state
of Ne2. It accurately reflects the position of the high-energy repulsive region of the potential
required by the high-energy beam data, includes values of dispersion coefficients C6, C8 and
C10, and has the ability to reproduce highly accurate viscosity values. The potential is a
significant improvement over the XC-2, XC-3 and HFD-C2 potential of Aziz et al. [170],
which were considered to be the best among the potentials availbale in the literature (See
literature reviews in Ref. [171]). In this work, we fit the accurate potential curve of Aziz and
Slaman [171]. The RMS for this fitting is 0.0148, and the determined potential parameters are
α = 2.57804505, β = 3.59526654, η = 302.992153, and χ = 0.898113069. The fitted potential
curve is presented in Fig.4.2.2. It agrees very well with the accurate data [171]. To be noted,
Tang-Toennies potential [175] is slightly harder than the accurate data. The spacings ∆Gν+1/2

of vibrational energies calculated by using the fitted potential are listed in Table 4.2.2 and
compared with literature data. It agrees well with experiment [172] and other calculations
by HFD-B, HFD-C2, and XC-2. [171], and is much better than Lennard-Jones potential [3],
extended Rydberg -van der Waals potential [79] and Tang-Toenneis potential [80].

Table 4.2.2: Computed vibrational energies Eν and spacings ∆Gν+1/2 by using the new potential, compared with HFD [171],

HFD-C2 [171], XC-2 [171] and experiment [172]. All in units of cm−1. The vibrational spacings for the potentials, xR-vdw (ex-

tended Rydberg -van der Waals potential [79]), TT ( Tang-Toenneis potential [80]), mTT ( modified Tang-Toennies potential [91]),

and LJ (Lennard-Jones potential [3]), are from Ref. [177].

ν Eν ∆Gν+1/2 ∆Gν+1/2 ∆Gν+1/2 ∆Gν+1/2 ∆Gν+1/2 ∆Gν+1/2 ∆Gν+1/2 ∆Gν+1/2 ∆Gν+1/2

this work this work HFD-B HFD-C2 XC-2 xR-vdW TT mTT LJ Exp.
Ref. [171] Ref. [171] Ref. [171] Ref. [177] Ref. [177] Ref. [177] Ref. [177] Ref. [172]

0 0 14.199 13.84 13.79 13.45 11.026 13.001 13.502 10.442 13.7± 0.5
1 14.199 2.989
2 17.188

4.2.3. Ar2

The interatomic potential for Ar2 is as well characterized as that for many common stable
diatomics, experimentally by using several spectroscopic techniques and theoretically by using
ab initio techniques [173]. The most accurate potential energy curve of its ground state was
experimentally determined by Aziz [174]. Thus, we use Eq.(4) and the dispersion coefficients
C6, C8 and C10 of Ref. [175] to fit directly the accurate data of Aziz [174]. The RMS of
this fitting is 0.0151, and the potential parameters are determined to be α = 1.5069144, β =
19.2457331, η = 126.019972, and χ = 1.28100922. Our fitted potential curve is presented in
Fig.4.2.3, which agrees very well with the accurate data [174]. As shown in Fig.4.2.3(a), Tang-
Toennies potential [175] is much harder, and CCSD/daug-cc-pV5Z-33211 calculations [173] is
slightly harder than the accurate data [174]. Overall, the new potential is greatly improved
over the three-parameter potential [100] in all the regions.

Cahill and Parsegian [98] have compared Rydberg-London (RL) potential for the ground-
state Ar2 with Lennard-Jones (LJ) potential [3]. They pointed out that the LJ potential curve
matched at the potential minimum is too deep for R > 8.5 Bohr (4.5 Å), and too hard for
R < 5.671 Bohr (3 Å) [98]. Does it matter that LJ fails to fit the Ar-Ar interaction? Cahill and
Parsegian [98] found that the dimensionless second virial coefficient B2/R

3
e of Ar2 calculated
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by using RL and LJ potentials at room temperature are −0.499 and −0.899, which differ from
the experimental value of -0.552 [176] by 9.6% and 63%, respectively. Thus, LJ fitting with
only two parameters is not as accurate as RL fitting [98].
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Fig.4.2.3 Comparison of the ground-state potential curve of Ar2: The present work (this work) (Red line, α = 1.5069144,

β = 19.2457331, η = 126.019972, χ = 1.28100922, Re = 7.10, C6 = 64.3, C8 = 1623, and C10 = 49060 ) with CCSD/daug-cc-

pV5Z-33211 calculations (Cyan cross, Ref. [173]), experimental data (Dark filled circles, Ref. [174], Tang-Toennies potential (Blue

line, A = 748.3, b = 2.031, C6 = 64.3, C8 = 1623, and C10 = 49060, Ref. [175]), Rydberg-London potential (Dark line, a = 1720,

b = 2.6920, c = 0.2631, d = 37.943, e = 177588, Ref. [98]), and three-parameter potential (Green line, α = 0.8706, β = 0.403498,

γ = 0.38, Ref. [100]).

Then, is the accuracy of RL potential important in the liquid phase where additivity is only
approximate? Cahill and Parsegian [98] have significantly tested whether the lack of complete
additivity in the liquid phase obscures the advantages of the RL potential over the LJ potential.
They calculated the heats of vaporization ∆vapH of Ar at their boiling points and atmospheric
pressure by using RL and LJ potentials in Monte Carlo simulation [98]. RL and LJ potentials
gave ∆vapH = 0.0694, 0.0787 eV (per atom), which differ from the experimental value of
0.0666 eV [176] by 4.2% and 18%, respectively. Clearly, the errors due to a lack of additivity
are of the order of 4% [98], while the errors due to the defect of the LJ potential are about
18% [98]. Their analysis has shown that even in the liquid phase, limited additivity is less of
a problem than the defects of the LJ potential [98]. Thus, they concluded that RL potential
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represents weak noncovalent bonds better than LJ potential [98]. How is the accuracy of
our new potential function Eq.(4), compared to RL potential? In the intermediate-R region,
as shown in FIG.4.2.3(b), RL potential curve except a visible deviation at 10 < R < 12
overlaps well with our potential curve and the accurate data. In the repulsive region shown in
Fig.4.2.3(a), RL curve is slightly softer than the accurate data and our potential (to be noted,
RL converges to a finite value as R goes to 0). In the large-R region shown in Fig.4.2.3(c), RL
potential displays a discernible deviation at R = 12 ∼ 16 Bohr. It shows that our potential
function is more accurate than RL potential.

Further, we calculate the vibrational energies for the ground state of Ar2 using the new
potential function. The results are summarized in Table 4.2.3 and compared with those
obtained by using other potential functions. Our results are in excellent agreement with
experiment [174] and HFD calculations [66], and are more accurate than those obtained by
using RL [98], Tang-Toennies [80], and Lennard-Jones [3] potentials.

Table 4.2.3: Computed vibrational energies Eν and spacings ∆Gν+1/2 among them by using the present potential for Ar2,

compared to theoretical and experimental data available in the literature. All energies in cm−1. The abbreviation for potential

functions are: HFD ( Hartree-Fock dipersion potential [66]), xR-vdw (extended Rydberg -van der Waals potential [79]), TT

( Tang-Toenneis potential [80]), mTT ( modified Tang-Toennies potential [91]), RL (Rydberg-London potential [98], and LJ

(Lennard-Jones potential [3]).

ν Present Potential ∆Gν+1/2 ∆Gν+1/2

ab initio ab initio ab initio ab initio HFD xR-vdw TT mTT RL LJ Exp.
Eν ∆Gν+1/2 Ref. [173] Ref. [178] Ref. [181] Ref. [182] Ref. [177] Ref. [177] Ref. [177] Ref. [177] Ref. [98] Ref. [177] Ref. [174,179]

0 0 25.902 25.29 25.50 25.69 25.75 25.503 20.793 23.184 25.247 25.914 19.277 25.69±0.01
1 25.902 20.550 20.12 20.14 20.57 20.48 20.378 17.638 19.463 20.506 20.956 16.356 20.58±0.02
2 46.453 15.427 15.18 15.06 15.57 15.44 15.602 14.566 15.742 15.388 16.037 13.633 15.58±0.02
3 61.880 10.799 10.58 10.63 10.91 10.79 10.691 11.620 12.022 10.553 11.255 11.118 10.91±0.03
4 72.678 6.918 6.57 6.68 6.83 6.76 6.674 8.856 8.301 6.275 6.80 8.824 6.84±0.07
5 79.597 3.796 3.40 3.56 - - 4.001 6.350 4.580 3.921 3.309 6.763 -
6 83.392 1.494 - 1.42 - - - - - - 1.105 - -
7 84.886

4.2.4. Kr2

In this work, we fit the accurate potential curve of HFD-B experimental data for the ground-
state Kr2 presented in Ref. [183] and use the dispersion coefficients C6 = 129.6, C8 = 4187, and
C10 = 155500 of Ref. [175]. The RMS for this fitting is 0.0269, and the determined potential
parameters are α = 1.69712234, β = 5.28825134, η = 246.375269, χ = 0.85643772. We
present the fitted potential curve in Fig.4.2.4. It agrees very well with HFD-B data [183]. To
be noted, Tang-Toennies potential [175] is slightly harder than the accurate data. Rydberg-
London potential [98] in the repulsive region has a slight deviation from the HFD-B data,
and has a large deviation at R = 12 ∼ 17 Bohr. It concludes that our present potential is
more accurate than Rydberg-London and Tang-Toennies potentials. In Table 4.2.4, we list the
spacings of vibrational energies calculated by using the present potential and compare them
with the literature data. We find that our results agree well with experiment [184,185].
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Fig.4.2.4 Comparison of the ground-state potential curve of Kr2 of the present work (this work) (Red line, α = 1.69712234,

β = 5.28825134, η = 246.375269, χ = 0.85643772,Re = 7.58, C6 = 129.6, C8 = 4187, and C10 = 155500 ) with Rydberg-London

potential (Blue line, a = 2499, b = 2.5249, c = 0.2466, d = 78.214, e = 199064, Ref. [98]), HFD-B experimental data (Dark filled

circles, Ref. [183]), Tang-Toennies potential curve (Green line, A = 832.4, b = 1.865, C6 = 129.6, C8 = 4187, and C10 = 155500,

Ref. [175]).

Table 4.2.4: Comparison of our computed vibrational spacings for Kr2 with experiment and theory. All values are given in

cm−1. The vibrational spacings for the potentials, xR-vdw (extended Rydberg -van der Waals potential [79]), TT ( Tang-Toenneis

potential [80]), mTT ( modified Tang-Toennies potential [91]), RL (Rydberg-London potential [98]), and LJ (Lennard-Jones

potential [3]), are from Ref. [177].

Transition Exp. Exp. this work xR-vdW TT mTT RL LJ
Ref. [184] Ref. [185] Ref. [177] Ref. [177] Ref. [177] Ref. [98] Ref. [177]

0-1 21.56±0.54 21.175±0.01 21.53 23.707 21.471 21.098 21.560 21.704
1-2 19.09±0.57 19.093±0.02 19.38 20.940 19.307 19.420 19.543 19.106
2-3 16.76±0.60 17.22 18.220 17.144 16.981 17.484 16.642
3-4 14.76±0.75 15.07 15.563 14.980 15.232 15.426 14.318
4-5 12.23±0.51 12.95 12.996 12.817 12.447 13.374 12.142
5-6 10.49±0.50 10.90 10.554 10.653 10.201 11.340 10.120
6-7 8.92±0.44 8.95 8.276 8.490 8.734 9.339 8.258
7-8 6.92±0.63 7.14 6.210 6.327 6.560 7.401 6.565
7-9 5.54±0.30 5.48 4.401 4.163 5.103 5.572 5.047
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4.2.5. Xe2
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Fig.4.2.5 Comparison of the ground-state potential curve of Xe2 of the present work (this work) (Red line, α = 1.45493289,

β = 15.1518022, η = 248.22859, χ = 0.876419067, Re = 8.25, C6 = 285.9, C8 = 12810, and C10 = 619800 ) with HFD-B

experimental data (Dark filled circles, Ref. [183]), Tang-Toennies potential curve (Green line, A = 951.8, b = 1.681, C6 = 285.9,

C8 = 12810, and C10 = 619800, Ref. [175]).

In this work, we fit the accurate potential curve of HFD-B experimental data for the
ground-state Xe2 presented in Ref. [183] and use the dispersion coefficients C6 = 285.9, C8 =
12810, and C10 = 619800 of Ref. [175]. The RMS for this fitting is 0.0213, and the determined
potential parameters are α = 1.45493289, β = 15.1518022, η = 248.22859, χ = 0.876419067.
We present the fitted potential curve in Fig.4.2.5. It agrees very well with HFD-B data [183].
Similar to Kr2, Tang-Toennies potential [175] is harder than the HFD-B data in the repulsive
region. It concludes that our present potential is more accurate than Tang-Toennies potential.
In Table 4.2.5, we list the spacings of vibrational energies calculated by using the present
potential and compare them with the literature data. We find that our results agree well with
experiment [184,185].
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Table 4.2.5: Comparison of our computed vibrational energy spacings for Xe2 with experimental and other theoretical data. All

values are given in cm−1.The vibrational spacings for the potentials, xR-vdw (extended Rydberg -van der Waals potential [79]),

TT ( Tang-Toenneis potential [80]), and LJ (Lennard-Jones potential [3]), are from Ref. [177].

Transition Exp. (Ref. [186]) Modified exp-6 (Ref. [187]) CCSD (Ref. [180]) this work xR-vdW (Ref. [177]) TT (Ref. [177]) LJ (Ref. [177])
0-1 19.90±0.30 20.71 18.65 19.50 20.911 19.643 21.488
1-2 18.55±0.30 19.27 17.50 18.37 18.856 18.358 19.370
2-3 17.20±0.30 17.48 16.35 17.23 16.845 17.092 17.343
3-4 16.17±0.30 16.22 15.20 16.08 15.101 15.849 15.408
4-5 14.63±0.30 14.71 14.05 14.93 14.868 14.629 13.570
5-6 13.70±0.30 13.30 12.92 13.78 12.922 13.435 11.830
6-7 12.63±0.30 12.10 11.79 12.62 11.004 12.271 10.194
7-8 11.33±0.30 10.80 10.68 11.48 9.123 11.141 8.664
8-9 10.15±0.30 9.52 9.59 10.35 7.297 10.045 7.244
9-10 8.95±0.30 8.49 8.52 9.24 5.563 8.990 5.939
10-11 7.83±0.30 7.44 7.49 8.17
11-12 6.79±0.30 6.46 6.49 7.14
12-13 5.83±0.30 5.66 5.54 6.15
13-14 4.93±0.30 4.73 4.63 5.22
14-15 4.11±0.30 3.96 3.81 4.35

4.3.Alkaline-Earth Dimers

Alkaline-earth metals attract both experimental and theoretical research in the field of cold
atom interactions. Cooling and trapping of several species (Mg, Ca) was motivated by the
use of group-II atoms for realization of optical frequency standards and by the perspective for
achievement of quantum degeneracy. Presently cooling techniques are developed for Ca with
which microkelvin and even nanokelvin temperatures were reported.

An important problem for making reliable theoretical predictions on cold collision phenom-
ena in this area is to obtain accurate interaction potentials for alkaline-earth dimers. Contrary
to the alkali metals, the available spectroscopic information is by no means complete and often
with insufficient accuracy.

4.3.1. Ca2

The X1 ∑+
g state of Ca2 has been the subject of several investigations since the early exper-

imental study of the so-called green system by Balfour and Whitlock [188] in 1975, where
vibrational levels up to the 7th level were observed. In 1980, Vidal [189] extended the spectro-
scopic data on the X state of Ca2 using the laser induced fluorescence technique and derived
new sets of Dunham coefficients for the X and B states describing a total of 5846 observed lines
covering vibrational levels from ν = 0 to 34. A potential-energy curve for the ground state of
Ca2 based on the inverted perturbation approach (IPA) was determined, which allowed the
extrapolation of the ground-state dissociation energy from experimental data. The calculated
eigenenergies of this IPA potential, however, do not agree with the term energies calculated
with the Dunham coefficients within the 0.03 − cm−1 uncertainty. Later, in 2000, Tiemann
group [190] reported on an accurate determination of the Ca2 ground-state potential-energy
curve.
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Fig.4.3.1 Comparison of the ground-state potential curve of Ca2 of the present work (α = 0.838362902, β = 2.96505942,

η = 21.2098198, χ = 1.75753763, Re = 8.081, C6 = 2121, C8 = 223000, and C10 = 21320000 ) with the IPA data points in 1980

(Ref. [189]), IPA data points in 2002 (Ref. [190]), Tang-Toennies potential (A = 28.23, b = 0.9987, C6 = 2121, C8 = 223000, and

C10 = 21320000, Ref. [191] ), and three-parameter potential [100].

Table 4.3.1.: Comparison of computed vibrational energies for 40Ca2 with experiment [189]. All values are given in cm−1.

ν this work Exp.(Ref. [189]) ν this work Exp.(Ref. [189]) ν this work Exp.(Ref. [189])
0 32.39 32.26 12 647.27 650.28 24 994.07 992.55
1 93.67 95.17 13 686.47 688.84 25 1011.07 1009.75
2 153.14 155.94 14 723.80 725.51 26 1026.38 1025.31
3 210.81 214.58 15 759.25 760.30 27 1040.04 1039.24
4 266.66 271.12 16 792.81 793.24 28 1052.14 105l.57
5 320.68 325.59 17 824.49 824.35 29 1062.74 1062.32
6 372.88 377.99 18 854.28 853.64 30 1071.93 1071.50
7 423.24 428.35 19 882.20 881.15 31 1079.77 1079.14
8 471.76 476.69 20 908.25 906.88 32 1086.33 1085.27
9 518.43 523.03 21 932.44 930.87 33 1091.66 1089.89
10 563.24 567.40 22 954.79 953.13 34 1095.83 1093.04
11 606.19 609.81 23 975.32 973.68 - - -

Using Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [191], we fit the accu-
rate data of Ref. [190]. The RMS of this fitting is 0.0116, and the potential parameters are
determined to be α = 1.24946345, β = 2.67596495, η = 29.910735, and χ = 1.34122874. The
fitted potential curve is presented in Fig.4.3.1 and agrees very well with the IPA data [189,190]
and Tang-Toennies potential [191]. The present potential is greatly improved over the three-
parameter potential in all the regions [100]. In Table 4.3.1., we list the computed vibrational
energies by using the present potential for 40Ca2. It agrees very well with experiment [189].

4.3.2. Sr2

Over the past decades the Sr2 molecule has been the subject of many different studies. Cur-
rently there is high interest in ultracold ensembles of strontium atoms and high-precision
spectroscopy on strontium, because it could be a candidate for an optical frequency standard
(see literature review in Ref. [192]). Recently, Tiemann group has derived precise potentials
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for the ground-state of Sr2 by high-resolution Fourier-transform spectroscopy of fluorescence
progressions from single-frequency laser excitation of Sr2 produced in a heat pipe at very high
temperature (950 oC).
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Fig.4.3.2. Comparison of the ground state of Sr2 of the present work (this work) (Red line,α = 0.766237652, β = 2.72708084,

η = 21.152344, χ = 1.76518642, Re = 8.828, C6 = 3103.0, C8 = 379200.0, C10 = 42150000.0) with the experimental data

(Dark filled circles, Ref. [192]) and Tang-Toennies potential (Blue line, A=44.73, b=0.9699, C6 = 3103.0, C8 = 379200.0,

C10 = 42150000.0, Ref. [193]). (a) Full scale. (b) Enlarged in the repulsive region.

Table 4.3.2.: Computed vibrational energies (in units of cm−1) for 88Sr2. All values are relative to the energy of the first

vibrational level ν = 0. Dissociate energy De = 1081.82cm−1 [195].

ν Eν ν Eν ν Eν ν Eν ν Eν

0 0. 13 441.62 26 761.94 39 958.47 52 1041.36
1 38.18 14 470.62 27 781.46 40 968.57 53 1043.97
2 75.68 15 498.90 28 800.24 41 977.98 54 1046.12
3 112.47 16 526.45 29 818.27 42 986.72 55 1047.86
4 148.57 17 553.28 30 835.58 43 994.82 56 1049.21
5 183.96 18 579.39 31 852.14 44 1002.27 57 1050.23
6 218.65 19 604.77 32 867.97 45 1009.11 58 1050.95
7 252.63 20 629.42 33 883.07 46 1015.35 59 1051.43
8 285.91 21 653.34 34 897.44 47 1021.01 60 1051.72
9 318.48 22 676.53 35 911.08 48 1026.12 61 1051.88
10 350.34 23 698.98 36 924.00 49 1030.69 62 1051.94
11 381.48 24 720.71 37 936.20 50 1034.74
12 411.91 25 741.69 38 947.69 51 1038.29

In this work, we use Eq.(4) and the dispersion coefficients of Ref. [193] to fit the experi-
mental data of Sr2 [192]. The RMS of this fitting is 0.0674, and the potential parameters are
determined to be α = 0.766237652, β = 2.72708084, η = 21.152344, χ = 1.76518642. The
fitted potential curve, as shown in Fig.4.3.2., is in excellent agreement with the experimentally
determined potential [192]. In the repulsive wall (Fig.4.3.2(b), shows discernible, increased
differences from the experimental data [192] with decreasing R in the region of R < 8 Bohr.
Using the fitted potential, we got in total 63 vibrational levels which are listed in Table 4.3.2.
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This is in agreement with a recent experiment [194], where a two-photon photoassociative
spectroscopy of ultracold 88Sr has determined the binding energy of the last vibrational level
ν = 62. Meanwhile, very recently, ground state levels as high as ν = 60 (outer turning point
at 23 Å and 0.1 cm −1 below the asymptote) have also been observed by Fourier-transform
spectroscopy of fluorescence progressions [195], which support our calculations.

4.3.3. Mg2
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Fig.4.3.3 Comparison of the ground-state potential curve of Mg2: The present work (this work) (Red line, α = 1.24946345,

β = 2.67596495, η = 29.910735, χ = 1.34122874, Re = 7.354, C6 = 627, C8 = 41500, and C10 = 2757000 ) with the RKR data

points (Green open circles, Ref. [196]), IPA potential (Dark filled circles, Ref. [197]), X-representation of the potential energy

curves ( Blue line, Ref. [198]), Tang-Toennies potential (Green line, A = 7.3486, b = 1.0475, C6 = 627, C8 = 41500, and

C10 = 2757000, Ref. [199]), and ab initio multi-configuration valence bond (MVB) calculation (cyan line, Ref. [200]).

There are several ways to obtain the interaction potential of the ground-state Mg2. First,
a Rydberg-Klein-Rees (RKR) potential [196] has been constructed from the measurement of
the rovibrational levels. Second, Vidal and Scheingraber [197] have improved upon the RKR
analysis [196] by applying a variational procedure based on the inverted perturbation approach
(IPA). As shown in Fig.4.3.3, there is a slight difference between RKR and IPA data points in
the attractive region. Very recently, Tiemann group [198] has investigated the A1 ∑+

u -X1 ∑+
g

UV spectrum of Mg2 with high resolution Fourier-transform spectroscopy, and achieved a very
accurate PEC for the ground-state Mg2, i.e., the X-representation PEC shown in Fig.4.3.3,
which overlaps exactly with the IPA data points. Using Eq.(4) and the dispersion coefficients
C6, C8 and C10 of Ref. [198], we fit the accurate data of Ref. [198]. The RMS of this fitting is
0.00534, and the potential parameters are determined to be α = 1.24946345, β = 2.67596495,
η = 29.910735, and χ = 1.34122874. Fig.4.3.3 presents our fitted PEC. Except a slight
deviation in the repulsive region, the fitted PEC overlaps quite well with the IPA points. To
be noted, Tang-Toennies potential [199] is getting softer and softer in the repulsive region (see
Fig.4.3.3(a)) as R decreases, and shows a slight deviation from the IPA points in the attractive
region. In comparison with the other PECs, ab initio multi-configuration valence bond (MVB)
calculation [200] shows some deviations from the IPA data points [197] and X-representation
PEC [198], but is close to the RKR points [196].
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4.4.Metal-Rare Gas Dimer

4.4.1. LiHe

Using Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [201], we fit the potential
energy curve of the ground-state LiHe [201]. The root-mean-square of this fitting is 0.0416,
and the potential parameters are determined to be α = 1.279007516, β = 0.00616, η =
7.690378437, χ = 0.906530719. The fitted potential curve is presented in Fig.4.4.1, which
agrees well with Ref. [201]. The present potential is greatly improved over the three-parameter
potential [100].
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Fig.4.4.1. Comparison of the ground-state potential curve of LiHe of the present work (this work) (α = 1.2471927, β =

0.100442894, η = 7.96945502, χ = 0.931774366, Re = 11.645, C6 = 22.507, C8 = 1083.2, and C10 = 72602.1 ) with KTTY

potential curve ( A = 2.430857, b1 = 1.04911, b2 = 0.00381298, C6 = 22.507, C8 = 1083.2, and C10 = 72602.1, Ref. [201]) and

three-parameter potential (α = 0.7047, β = 0.00969121, γ = 1.04, Ref. [100]).

4.4.2. LiAr
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Fig.4.4.2. Comparison of the ground-state potential curve of LiAr of the present work (α = 0.756392786, β = 0.0101626292,

η = 5.01705619E − 011, χ = 0.973713149, Re = 9.251, C6 = 174.439002, C8 = 16211.717, C10 = −648740.115) with experi-

ment [203].
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Using Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [203], we fit the ex-
perimentally determined potential data of the ground-state LiAr [203]. The RMS of this
fitting is 0.00787, and the potential parameters are determined to be α = 0.756392786,
β = 0.0101626292, η = 5.01705619 ∗ 10−11, χ = 0.973713149. The fitted potential curve
is presented in Fig.4.4.2, which agrees well with Ref. [203]. We have computed the vibrational
energies for the ground state of 7Li40Ar. The computed energies, referencing to the lowest
level, are 0., 15.7675926, 25.9838635, 30.6602299 cm−1, which are in good agreement with
experimental values (0, 16.0876, 26.4140, 31.1668 cm−1) [203].

4.4.3. NaAr
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Fig.4.4.3. Comparison of the ground-state potential curve of NaAr of the present work (α = 1.05262069, β = 6.76650021 ∗
10−5, η = 2.6312004, χ = 0.977308837, Re = 9.464, C6 = 146.291942, C8 = 37301.7153, C10 = −2839043.74, and C12 =

98879551) with experiment [204].

Table 4.4.3: Comparison of 23Na40Ar vibrational energies ( cm−1) of present work with experiments [204–206]. The relative

errors are compared to Ref. [204].

ν Exp.(Ref. [204]) present work Ref. [205] Ref. [206]
0 0 0 0 0
1 11.243 11.321 (0.69%) 11.243 (0.0%) 11.244 (0.01%)
2 20.311 20.589 (1.37%) 20.308 (0.01%) 20.290 (0.10%)
3 27.137 27.592 (1.68%) 27.134 (0.01%) 26.710 (1.57%)
4 31.722 32.243 (1.64%) 31.720 (0.01%) 31.180 (1.71%)
5 34.219 34.749 (1.55%) - -
6 35.086 35.627 (1.31%) - -

Using Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [204], we fit the
experimentally-determined potential curve of Ref. [204]. The RMS of this fitting is 0.00133,
and the potential parameters are determined to be α = 1.05262069, β = 6.76650021 ∗ 10−5,
η = 2.6312004, and χ = 0.977308837. The fitted potential curve is presented in Fig.4.4.3.,
which agrees well with the experimental data [204]. We have computed the vibrational en-
ergies for the ground state of 23Na40Ar and listed in Table 4.4.3. The relative errors of the
present calculations by using the new potential are less than 2%.
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4.4.4. KAr

Using Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [207], we fit the experimentally-
determined potential curve of the ground-state KAr [207]. The RMS of this fitting is 0.00651,
and the potential parameters are determined to be α = 0.784386108, β = 0.110425294,
η = 1.25453368, χ = 0.902759495. The fitted potential curve is presented in Fig.4.4.4.,
which agrees well with the experimental data [204].
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Fig.4.4.4. Comparison of the ground-state potential curve of KAr of the present work (α = 0.784386108, β = 0.110425294,

η = 1.25453368, χ = 0.902759495, Re = 10.2155, C6 = 813.707004, C8 = −92544.8751, and C10 = 5201954.29) with experi-

ment [207].

4.4.5. NaKr
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Fig.4.4.5. Comparison of the ground-state potential curve of NaKr of the present work (α = 1.03555444, β = 1.51652775, η =

17.7782338, χ = 0.665157117, Re = 9.297, C6 = 774.161953, C8 = −71575.4863, and C10 = 3137439.55) with experiment [208].

Using Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [208], we fit the
experimentally-determined potential data of the ground-state NaKr [208]. The RMS of this
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fitting is 0.00437, and the potential parameters are determined to be α = 1.03555444, β =
1.51652775, η = 17.7782338, χ = 0.665157117. The fitted potential curve is presented in
Fig.4.4.5., which agrees well with the experimental data [208].

4.4.6. CaHe
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Fig.4.4.6 Comparison of the ground-state potential curve of CaHe of the present work (this work) (α = 1.279007516, β = 0.00616,

η = 7.690378437, χ = 0.906530719, Re = 9.64, C6 = 46.8, C8 = 1835, and C10 = 118500 ) with Kleinekathöfer potential curve

(KTTY) ( A = 3.19, b1 = 1.053, b2 = 0.00745, C6 = 46.8, C8 = 1835, and C10 = 118500, Ref. [209]).

Using Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [209], we fit the potential
energy curve of the ground-state CaHe [209]. The RMS of this fitting is 0.02, and the potential
parameters are determined to be α = 1.279007516, β = 0.00616, η = 7.690378437, χ =
0.906530719. The fitted potential curve is presented in Fig.4.4.6, which agrees very well with
Ref. [209].

4.5. Group 12 Dimers

Diatomic molecules formed from two closed shell atoms are van der Waals molecules such as
dimers (Zn2, Cd2, Hg2) of group 12 atoms, the so-called battery elements, with outer electronic
configuration nd10(n + 1)s2. These dimers have been investigated for a long time, and are of
interest for a variety of reasons [210]. A large number of papers on the interatomic potential
energies of these dimers have been published (see review in Ref. [211]). Experimentally, Hg2

potential is probably the most extensively studied among these three dimers. Not until late
1980s, efficient cooling of the mercury dimers by supersonic expansion made it possible to
resolve the vibrational and rotational spectra of the absorption bands for transitions from
ground state to excited states. Since much higher temperature is required to vaporize cadmium
and zinc, Cd2 and Zn2 are less extensively studied than Hg2. Nevertheless, recent laser
spectroscopies of Cd2 and Zn2 seem to give reliable values of ωe and De of the electronic
ground states. But the equilibrium distances Re of these dimers are less certain.
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4.5.1 Zn2
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Fig.4.5.1. Comparison of the ground-state potential curve of Zn2 of the present work (this work) (α = 0.951854441, β =

0.845807252, η = 5.17252173, χ = 1.65593701, Re = 7.323, C6 = 359, C8 = 13500, and C10 = 640000 ) with the recent

CCSD calculations ( a6 = −840.0, a7 = 0.0, a8 = 1120945.16929225, a9 = −40566470.5207570, a10 = 600462536.497241,

a11 = −4601554475.95170, a12 = 19363653998.2602, a13 = −42652938535.8249, and a14 = 38570620352.9465 , Ref. [212]) and

Tang-Toennies potential ( A = 7.63, b = 1.1489, C6 = 359, C8 = 13500, and C10 = 640000 , Ref. [211]).

For the ground state of Zn2, we use Eq.(4) and the dispersion coefficients C6, C8 and C10

of Wei et al. [211] to fit the Tang-Toennies potential curve derived recently by Wei et al.
[211]. The RMS of this fitting is 0.00455, and the potential parameters are determined to
be α = 0.951854441, β = 0.845807252, η = 5.17252173, χ = 1.65593701. In Fig.4.5.1, we
present the fitted potential curve, which agrees very well with Ref. [211]. The recent CCSD
calculations of Pahl et al. [212] are fitted with a function form of extended Lenard-Jones
potential V (R) =

∑k=14
k=6 ak/R

k. Their calculations [212] estimated the dispersion coefficient
C6 to be 514 and set a6 = C6. The value of C6 is about 40 percent larger than the accurate
literature data (359 [211]). On the other hand, the two terms corresponding to C8 and C10

in Ref. [212] have a positive sign. Thus, it is expected that the potential of Pahl et al. [212]
does not have the same long range behavior as the Tang-Toennies potential [211]. Near the
potential minimum, the potential of Pahl et al. [212] is not too different from the Tang-Toennies
potential [211].
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4.5.2 Cd2
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Fig.4.5.2. Comparison of the ground-state potential of Cd2 derived from the new function (α = 0.905436963, β = 1.13619161,

η = 7.52670062, χ = 1.63815301, Re = 7.752, C6 = 686, C8 = 28900, and C10 = 1537000 ) with the recent CCSD calculations (

a6 = −840.0, a7 = 0.0, a8 = 1975089.60438597, a9 = −72973282.5105466, a10 = 1110874391.15603, a11 = −8804084660.52397,

a12 = 38464166968.9086, a13 = −88181906149.4874, and a14 = 83111453189.9489 , Ref. [212]), and Tang-Toennies potential (

A = 10.26, b = 1.0842, C6 = 686, C8 = 28900, and C10 = 1537000 , Ref. [211]).

For the ground state of Cd2, we use Eq.(4) and the dispersion coefficients C6, C8 and C10

of Wei et al. [211] to fit the recent results of Wei et al. [211], where the interaction potential
is described by the Tang-Toennies potential model. The RMS of this fitting is 0.0069 and the
potential parameters are determined to be α = 0.905436963, β = 1.13619161, η = 7.52670062,
and χ = 1.63815301. In Fig.4.5.2, we present the fitted potential curve, which agrees very well
with Ref. [211]. The recent CCSD calculations of Pahl et al. [212] are fitted with a function
form of extended Lenard-Jones potential V (R) =

∑k=14
k=6 ak/R

k. In the CCSD calculation, Pahl
et al. [212] estimated the dispersion coefficient C6 to be 840 and set a6 = C6. This value is
twenty percent larger than the accurate literature data, 686. On the other hand, the two terms
corresponding to C8 and C10 have a positive sign. Thus, the potential of Pahl et al. [212] does
not have the same long range behavior as the Tang-Toennies potential [211]. Nevertheless, it
is not clear whether this will affect the shape of the potential near the potential minimum.
The experimental minimum of Czajkowski and Koperski [213] seems to agree with the Tang-
Toennies potential, while the more recent experiment of Strojecki et al [214] seems to agree
better with the calculations of Pahl et al. [212].

4.5.3 Hg2

There are many theoretical studies on the potential of the ground-state Hg2. The most exten-
sive one is probably the recent theoretical calculation of Pahl et al. [215]. They have carried
out a coupled cluster calculation with single, double, and perturbative triple excitations CCSD
(T), at the complete basis set limit, including correction for the full triples and spin-orbit inter-
actions. The CCSD(T)+SO+∆T data points of their calculation were fitted with the analytic
form of extended Lenard-Jones potential V (R) =

∑k=14
k=6 ak/R

k.
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Fig.4.5.3. Comparison of the ground-state potential of Hg2 fitted by using the new function (this work) (α = 1.06270654,

β = 2.29004018, η = 13.8969565, χ = 1.58681219, Re = 6.955, C6 = 392, C8 = 12920, and C10 = 537000 ) with the re-

cent CCSD(T)+SO+∆T calculations ( a6 = −392.0, a7 = 0.0, a8 = 513051.995806700, a9 = −19598874.8141078, a10 =

282773699.594663, a11 = −2026379590.56904, a12 = 7793899858.68874, a13 = −15443502105.5180, and a14 = 12400089118.4353

, Ref. [215]), and CCSD(T) calculation (Ref. [216]).

In this work, we use Eq.(4) and the dispersion coefficients C6, C8 and C10 of Ref. [217]
to fit the potential data calculated by using CCSD(T)+SO+∆T [215]. The root-mean-square
of our fitting is 0.0073, and the potential parameters are determined to be α = 1.06270654,
β = 2.29004018, η = 13.8969565, and χ = 1.58681219. In Fig.4.5.3, we present the fitted
curve and compare it with the recent CCSD(T) calculations of Munro et al. [216]. In the
CCSD(T)+SO+∆T calculation, Pahl et al. [215] estimated the dispersion coefficient C6 to be
the accurate data, -392, and set a6 = C6. Thus, the potential of Pahl et al. [215] has the same
long range behavior as the Tang-Toennies potential [217]. The present potential is also greatly
improved over the three-parameter potential [100].

4.6. Other van der Waals Dimers

4.6.1. LiHg

A 2 ∑+ van der Waals bond of the system LiHg is formed by the 1S0 Hg atom with the 2S1/2

Li atom. It is known that LiHg shows an anomalous behavior both with respect to shape
and magnitude of the well parameters compared to the other alkali-mercury systems. An
accurate potential for the ground-state LiHg has been obtained by Buck et al. [218]. Thus,
we fit their accurate potential curve by using the potential function Eq.(4) and the dispersion
coefficients C6 = 443.0, C8 = 25400.0, C10 = 1840000.0 of Ref. [80]. The RMS for this fitting is
0.0633, and the potential parameters are determined to be α = 1.00277412, β = 0.884046581,
η = 4.15797715, χ = 2.08111888. The fitted curve is presented in Fig.4.6.1. It agrees well
with experiment [218]. To be noted, Tang-Toennies potential shows an obvious deviation from
experiment at R = 8 ∼ 11 Bohr.
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Fig.4.6.1. Comparison of the ground-state potential of LiHg of the present work (Red line, this work, α = 1.00277412,

β = 0.884046581, η = 4.15797715, χ = 2.08111888, Re = 5.671, C6 = 443.0, C8 = 25400.0, C10 = 1840000.0 ) with Tang-

Toennies potential curve (Blue line, A = 2.246, b = 1.012, C6 = 443.0, C8 = 25400.0, C10 = 1840000.0, C12 = 1.68 × 108,

C14 = 1.95× 1010, C16 = 2.85× 1012 Ref. [80]) and experiment [218].

4.6.2. CdNe

The weakly bound van der Waals molecules of Group 12 ( Zn, Cd, Hg) and rare gas ( He, Ne,
Ar, Kr, Xe) atoms have been studied by Koperski et al. (see literature review in Ref. [219]).
Here we take CdNe as an example. We fit the experimentally determined potential data of the
ground-state CdNe [219]. The RMS of this fitting is 0.001127, and the potential parameters are
determined to be α = 1.19957532, β = 1.63773977, η = 11.8338502, χ = 1.06487289 (note: the
dispersion of C6 taken from Ref. [219]). The fitted potential agrees well with experiment [219].
In comparison with the three-parameter model potential [100], the new potential is greatly
improved in the repulsive region (see Fig.4.6.2(a)).
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Fig.4.6.2. Comparison of the ground state of CdNe of the present work (red line, this work, α = 1.19957532, β = 1.63773977,

η = 11.8338502, χ = 1.06487289, Re = 8.091, C6 = 31.810688 ) with three-parameter potential curve (blue line, α = 0.893146,

β = 0.33243839, γ = 0.4, Ref. [100]) and experiment (dark filled circles, Ref. [219]). (a) Repulsive region. (b) Attractive region.
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4.6.3. LiHe−
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Fig.4.6.3. Comparison of the ground state of LiHe− of the present work (red line, this work, α = 0.651021658, β =

0.0311407995, η = 0.509474386, χ = 1.03618203, and Re = 18.5) with the ab initio data of Ref. [220]. (a) Full curve. (b) Enlarged

Large-R part.

The He+Li− interaction potential can generate interest in a variety of contexts beyond
the general considerations associated with all weakly bound systems (for details, refer to
the literature review in Ref. [220]. We fit the accurate potential data of the ground-state
LiHe− [220]. In our potential function, the C4/R

4 term describes the ion-induced dipole
interaction given by −z2α1/(2R

4). The R−6 term describes the ion-induced quadrupole and
dispersion interaction given by −z2α2/(2R

6)−C6/R
6. The R−8term describes the ion-induced

octopole, the ion-hyperpolarizibility, and the dispersion interaction given by −z2α3/(2R
8) −

z2γ1/(24R8)−C8/R
8. These values are (all in atomic units): C6 = 70.365674, C8 = 6111.8844,

α1 = 1.38272, α2 = 2.428246, α3 = 10.62, and γ1 = 48.28598. The root-mean-square for
this fitting is 0.0435, and the potential parameters are determined to be: α = 0.651021658,
β = 0.0311407995, η = 0.509474386, and χ = 1.03618203. The fitted potential curve is
presented in Fig.4.6.3, which is in excellent agreement with the ab initio data [220]. To be
noted, if we also take α1 as the fitting parameter, then we have α1 = 1.34036506 as well as
α = 0.648801132, β = 0.0254107349, η = 0.422241742, and χ = 1.01883999. The fitted value
α1 = 1.34036506 is in good agreement with the data α1 = 1.38272 obtained in Ref. [220].

4.6.4. HeH

Numerous calculations have been made on the potential curve of the ground-state HeH (see
literature review in Ref. [221, 222]). Here we use Eq.(4) to fit the potential data of Tang-
Toennies [221]. The RMS of this fitting is 0.0001608, and the potential parameters are de-
termined to be α = 1.58803424, β = 0.579296416, η = 3.22806569, χ = 1.22237816 (The
dispersion coefficients taken from Ref. [221]). The fitted potential curve, as shown in Fig.4.6.4,
agrees well with Tang-Toennies potential. In comparison with Tang-Toennies potential, the
potential energies calculated by RCCSD/EVEN-II (the H and He EVEN basis sets were ob-
tained by extending each of the standard H and He aug-cc-pV5Z basis sets by one diffuse
function of each type in the standard even-tempered way) show about 10% deviation around
the energy minimum, but agree well in the large-R region.
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Fig.4.6.4. Comparison of the ground-state potential of HeH of the present work (this work) (Red line, α = 1.58803424,

β = 0.579296416, η = 3.22806569, χ = 1.22237816, Re = 6.5406, C6 = 2.81, C8 = 41.74, C10 = 874.2, Nmax = 5 ) with

Tang-Toennies potential (Dark filled circles, A = 4.474, b = 1.834, C6 = 2.81, C8 = 41.74, C10 = 874.2, Nmax = 8 Ref. [221])

and RCCSD/EVEN-II calculations (Green open circles, Ref. [222]).

4.6.5. NeH
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Fig.4.6.5. Comparison of the ground-state potential of HeH of the present work (this work) (Red line, α = 1.99549877,

β = 0.000214356648, η = 28.3976811, χ = 0.590250099, Re = 6.4839, C6 = 5.71, C8 = 92.59, C10 = 2007.0, Nmax = 5 ) with

Tang-Toennies potential (Dark filled circles, A = 11.78, b = 1.873, C6 = 5.71, C8 = 92.59, C10 = 2007.0, Nmax = 8, Ref. [221]).

Numerous calculations have been made on the potential curve of the ground-state NeH
(see literature review in Ref. [221]). Here we use Eq.(4) to fit the potential data of Tang-
Toennies [221]. The RMS of this fitting is 0.000217, and the potential parameters are deter-
mined to be α = 1.99549877, β = 0.000214356648, η = 28.3976811, χ = 0.590250099 (The
dispersion coefficients taken from Ref. [221]). The fitted potential curve, as shown in Fig.4.6.5.,
agrees well with Tang-Toennies potential.
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4.6.6. AgHe
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Fig.4.6.6. Comparison of the ground-state potential of AgHe of the present work (this work) (Red line,α = 1.3969125,

β = 0.00679322993, η = 4.4391844, χ = 0.909659481, Re = 8.669, C6 = 19.75, C8 = 641.3, C10 = 22020.0) with the best data

(Dark filled circles, Ref. [223]).

The interactions of neutral coinage metals (Au, Ag, Cu) with the rare gas atoms have
been studied intensively in recent years (see literature review in Ref. [223]). In 2008, AgHe
dimer was detected in the lab [224]. Very recently, Gardner et al. [223] have provided in their
supplementary materials the best extrapolated potential energy curves of the ground states of
the dimers X-Rg (X=Cu, Ag, Au, Rg=He, Ne, Ar, Kr, Xe, Rn). Thus, in this work, we use
Eq.(4) and the dispersion coefficients of Ref. [225] to fit the best potential data of the ground-
state AgHe [223]. The RMS of this fitting is 0.000818, and the potential parameters are
determined to be α = 1.3969125, β = 0.00679322993, η = 4.4391844, and χ = 0.909659481.
The fitted potential curve, as shown in Fig.4.6.6., agrees well with the best potential energies
of Gardner et al. [223]. Using the fitted potential, we got one vibrational level with the
energy of -0.0102874 mHartree (Relative to the bottom of the potential well, our calculated
vibrational energy is 0.0238376 mHartree ( 5.232 cm−1), which is in excellent agreement with
the calculated value of 5.2 cm−1 [226]).

4.6.7. XeF

Active interest in the rare gas halides has been motivated both by the peculiar nature of the
bonding involved, and by the use of their molecular bands to obtain UV laser action [227,228].
In particular, among the rare gas halides, XeF is remarkably different from the others. Its
ground-state potential curve shows a large curvature, which implies a very abrupt onset of
repulsion, and has a large well depth and a short bond length. In this work, we take it as
an example for rare gas halides. We use Eq.(4) and the dispersion coefficients of Ref. [79] to
fit the potential energy curve of the ground state of XeF experimentally determined by Lee
group [229] using the exp-spline-Morse-spline-van der Waals form [51]. The RMS of this fitting
is 0.0111, and the potential parameters are determined to be α = 3.44058805, β = 30202.8963,
η = 125046.845, χ = 1.29988247. The fitted potential curve, as shown in Fig.4.6.7., agrees
well with experiment.
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Fig.4.6.7. Comparison of the ground state of XeF of the present work (this work) (red line,α = 3.44058805, β = 30202.8963,

η = 125046.845, χ = 1.29988247, Re = 4.3478, C6 = 51.1212328, C8 = 971.8541) with the experimentally-determined potential

data (dark filled circles, Ref. [229]).

4.6.8. KrF
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Fig.4.6.8. Comparison of the ground state of KrF of the present work (this work) (red line,α = 1.88310506, β = 1.326016,

η = 14.6602054, χ = 1.1394956, Re = 5.6711, C6 = 35.1954218, C8 = 584.676487) with the experimentally-determined potential

data (dark filled circles, Ref. [230]).

In this work, we take KrF as one more example for rare gas halides. We use Eq.(4) and
the dispersion coefficients of Ref. [79] to fit the potential energy curve of the ground state
of KrF experimentally determined by Lee group [230] using the exp-spline-Morse-spline-van
der Waals form [51]. The RMS of this fitting is 0.00457, and the potential parameters are
determined to be α = 1.88310506, β = 1.326016, η = 14.6602054, χ = 1.1394956,. The fitted
potential curve, as shown in Fig.4.6.8., agrees well with experiment [230].

5. Meta-Stable Systems

The proposed potential function for the meta-stable systems is given by
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V (R, α, β, γ, ζ, q) =
J1(R, γ, ζ, q) + K1(R, α, β, ζ, q)

1 + S0(R)
(5)

with J1(R, γ, ζ, q) = e−2γR
(

ζ
Rq + η

)
, K1(R, α, β, ζ, q) = e−αR

(
ζ

Rq − βR
)
, and

S0(R) = e−R
(
1 + R + R2

3

)

5.1. He++
2

Table 5.1.: Comparison of the spacings ∆Gν = Eν+1 − Eν (in units of cm−1) of the vibrational energies Eν of the potential

well with the most accurate data [237]. The value in the parenthesis is the relative error compared to the accurate data [237].

4He++
2

3He4He++

ν this work Accurate (Ref. [237]) ν this work Accurate (Ref. [237])
0 3068.555 (0.57%) 3051.29 0 3285.664 (0.48%) 3269.92
1 2774.238 (0.42%) 2785.81 1 2952.595(0.002%) 2952.65
2 2

5.2. BeH++
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Fig.5.2. The comparison between the present potential potential (this work) (Red line, α = 0.614371674, β = 0.883328762,

γ = 0.109403265, ζ = 1.64081594, and q = 2.9011314), three-parameter model potential (Blue line, α = 0.687, β = 1.43632004,

γ = 0.1185, Ref. [100]), CCSD/6-311++G(3df,3pd)(Green cross, Ref. [100]), and the most accurate data (dark filled circles,

Ref. [238]) for the meta-stable diatomic dication BeH++. The barrier near R =6 Bohr. (a) Full scale. (b) Enlarged in the

repulsive region.

In this work, we use Eq.(5) to fit the accurate data of Ref. [238]. The RMS of this
fitting is 0.00114, and the potential parameters are determined to be α = 0.614371674, β =
0.883328762, γ = 0.109403265, ζ = 1.64081594, and q = 2.9011314. In Fig.5.2(a)(b), we
present the fitted potential curve and compare it with CCSD/6-311++G(3df,3pd) [100], three-
parameter potential [100], and the accurate data [238]. The present potential agrees well with
accurate data [238]. In the barrier and repulsive regions, the present potential is better than
CCSD/6-311++G(3df,3pd) calculations [100], and is greatly improved in the accuracy over
the three-parameter potential [100].
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5.3. AlH++

In this work, we use Eq.(5) to fit the CCSD/6-311++G(3df, 2pd) data of Ref. [100]. The RMS
of this fitting is 0.00214, and the potential parameters are determined to be α = 0.423212447,
β = 0.217842583, γ = 0.0280432067, ζ = 6.04865744, and q = 4.3704501. Fig.5.3 presents the
fitted potential, which is compared with CCSD/6-311++G(3df,3pd) [100] and three-parameter
potential [100]. In the repulsive and barrier regions, the present potential is greatly improved
over the three-parameter potential.
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Fig.5.3. The comparison between four-parameter model potential (Red line, this work, α = 0.423212447, β = 0.217842583, γ =

0.0280432067, ζ = 6.04865744, and q = 4.3704501 ), three-parameter model potential (Blue line, α = 0.585984, β = 0.79669152,

γ = 0.0365, Ref. [100]), and CCSD/6-311++G(3df,3pd)(Dark filled circles, Ref. [100]) for the meta-stable diatomic dication

AlH++. The barrier near R = 6 Bohr.
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Appendix A: Notes for Determining Pair-Potential Parameters

A.1. How to Determine Pair-Potential Parameters

The parameters of the proposed potential function may be estimated by a suitable method.
When estimating the reliability of the interatomic potential obtained, it is necessary to take
into account not only the measurement errors but also the approximate nature of the formulae,
which connect the measured characteristics with the interatomic potential. Also, it is necessary
to bear in mind that the function is over-determined and nonlinear in parameters. As a result,
different sets of proposed parameters can give the same precision when fitted to experimental
data. Our purpose in this study is to provide a few-parameter analytical function form to
uniformly describe the potential energy of diatomic systems. Thus, we try to define pair-
potential parameters as few as possible. Here are some notes for determining pair-potential
parameters.

• Note 1: For cases that need coefficients C6, C8, and C10, check the literature whether
accurate values are available (the higher-order coefficients C2n ( n ≥ 6) can be derived
by C2n = (C2n−2

C2n−4
)3C2n−6 [80]). If they are not available, Cn may be used as a potential

parameter for fitting.

• Note 2: For ionic covalent bonding, ionic bonding, and van der Waals systems, the
damping parameter χ can be set as a fitting parameter. As demonstrated in section 2, 3
and 4, it seems that χ varies from system to system and cannot be fixed as a constant.

• Note 3: We provide a Non-Linear Least-Squares Fitting (NLLSF) Fortran program1

for users to determine potential parameters (For the Fortran program, we provide two
examples, H2 and Ar2. Go to the following web link to download the package
http://www.nehu-economics.info/Fortran-Computer-Programs-with-Help.html
The package includes input and output files). It is not a black-box code. Users need to
define how many fitting parameters the potentia function has and to provide the input
file. For other inputs, user can use the default values.

• Note 4: Users may use other NLLSF program that is available. For example, Matlab
and gnuplot provide functions for solving NLLSF problems.

• Note 5: Contact us for any problem during the fitting process.

A.2. List of Pair-Potential Parameters

In this section, the determined potential parameters for neutral covalent bonding systems
studied in section 1, ionic covalent bonding systems studied in section 2, van der Waals binding
systems studied in section 4, and diatomic dications studied in section 5 are listed in Table
A1, A2, A3, and A4, respectively.

1To credit one of our authors, S. K. Mishra, who developed this program, please cite the following refer-
ence: S. K. Mishra, ”Performance of Differential Evolution Method in Least Squares Fitting of Some Typical
Nonlinear Curves”, Journal of Quantitative Economics, 5(1), 140-177 (2007).
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Table A1: Potential parameters α , β, κ, and η determined for neutral covalent diatomic systems by using Eq.(1). All in atomic

units

Molecule α β κ η
H2 1.24179616 1.91867424 0.0478910411 2.8004031
Li2 0.221158172 0.0981516842 0.145366735 1.19828642
B2 0.183899426 0.462900133 0.813404073 24.2300391
C2 0.127145432 0.967192362 1.89580627 28.3280362
N2 0.151104274 1.78382371 1.99999854 42.591009
F2 0.029803514 0.460794341 9.999999811 54.737768091
Si2 0.186283078 0.325358609 0.359889161 47.3860134
LiH 0.590929935 0.437032497 0.0488894485 11.33519
BeH 0.0439935564 0.372280509 4.997 0.93473275
LiNa 0.153370182 0.0750653157 0.225977753 0.390468193
InH 0.399432325 0.352975842 0.126597296 21.6996589
NO 0.255622994 1.40313848 1.05129052 65.1143618
HCl 0.52951669 0.941428491 0.212878625 42.6912765
OH 0.760387114 1.40066201 0.20986805 39.6142444
NH 0.641300128 1.05082101 0.269776121 27.3461228
CH 0.706575916 0.980984516 0.158091171 33.8165879
CO 0.602412105 2.49790792 0.23540789 160.846731
SiO 0.520285935 1.50404553 0.151927384 250.018351

Table A2: Potential parameters α , β, γ, η, ζ , χ and C4 determined for ionic covalent bonding systems by using Eq.(2). Re is

from the literature data. All in atomic units

Molecule α β γ η ζ χ C4 Re

H+
2 1.06464516 0.921196022 2α 3.61038634 1 2.572 4.95628851 2.0

HeH+ 1.94869912 2.60094136 α 1.78190656 2.04347269 2.64764358 0.709265297 2.042
He+

2 1.5047139 2.38355439 α 1 5.25975522 0.979471616 0.624816071 2.042
BeH+ 1.19634826 1.41938735 α 18.5564204 0.122559941 1.18705107 3.13563906 2.476
BeH− 1.16789295 1.18495346 α 12.6045998 1.26131762 2.17836477 18.4984266 2.669
LiH− 0.981753027 0.981349042 α 1 3.6729584 2.39811679 64.6224785 3.153

Table A3: Potential parameters α , β, η and χ determined for van der Waals weakly binding systems using Eq.(4). Re and Cn

( n = 6, 8, 10) are taken from literature. All in atomic units

Molecule α β η χ Re C6 C8 C10 Literature
H2 1.80886753 0.80476915 19.5353848 0.94375137 7.8 6.499 124.4 3286.0 Ref. [80]

NaK 0.581007114 0.169441107 1.27758572 1.86032252 10.315 2410.0 229050.0 24680000.0 Ref. [80]
He2 2.34281426 1.427609211 24.9327859 0.705917281 5.613 1.461 14.11 183.5 Ref. [90]
Ne2 2.57804505 3.59526654 302.992153 0.898113069 5.840 6.383 90.34 1536.0 Ref. [175]
Ar2 1.5069144 19.2457331 126.019972 1.28100922 7.10 64.3 1623 49060 Ref. [175]
Kr2 1.69712234 5.28825134 246.375269 0.85643772 7.58 129.6 4187 155500 Ref. [175]
Xe2 1.45493289 15.1518022 248.22859 0.876419067 8.25 285.9 12810 619800 Ref. [175]
Ca2 0.838362902 2.96505942 21.2098198 1.75753763 8.081 2121 223000 21320000 Ref. [191]
Mg2 1.24946345 2.67596495 29.910735 1.34122874 7.354 627 41500 2757000 Ref. [199]
Sr2 0.766237652 2.72708084 21.152344 1.76518642 8.828 3103.0 379200.0 42150000.0 Ref. [193]

LiHe 1.2471927 0.100442894 7.96945502 0.931774366 11.645 22.507 1083.2 72602.1 Ref. [201]
CaHe 1.279007516 0.00616 7.690378437 0.906530719 9.64 46.8 1835 118500 Ref. [209]
LiAr 0.756392786 0.0101626292 5.01705619E-011 0.973713149 9.251 174.439002 -16211.717 648740.115 Ref. [203]
NaAr 1.05262069 6.76650021E-5 2.6312004 0.977308837 9.464 146.291942 -37301.7153 2839043.74 Ref. [204]
KAr 0.784386108 0.110425294 1.25453368 0.902759495 10.2155 813.707004 -92544.8751 5201954.29 Ref. [207]
NaKr 1.03555444 1.51652775 17.7782338 0.665157117 9.297 774.161953 -71575.4863 3137439.55 Ref. [208]
Zn2 0.951854441 0.845807252 5.17252173 1.65593701 7.323 359 13500 640000 Ref. [211]
Cd2 0.905436963 1.13619161 7.52670062 1.63815301 7.752 686 28900 1537000 Ref. [211]
Hg2 1.06270654 2.29004018 13.8969565 1.58681219 6.955 392 12920 537000 Ref. [217]
LiHg 1.00277412 0.884046581 4.15797715 2.08111888 5.671 443.0 25400.0 1840000.0 Ref. [80]
CdNe 1.19957532 1.63773977 11.8338502 1.06487289 8.091 31.810688 - - Ref. [219]
LiHe− 0.651021658 0.0311407995 0.509474386 1.03618203 18.5 70.365674 6111.8844 - Ref. [220]
HeH 1.58803424 0.579296416 3.22806569 1.22237816 6.5406 2.81 641.74 874.2 Ref. [221]
NeH 1.99549877 0.000214356648 28.3976811 0.590250099 6.4839 5.71 92.59 2007.0 Ref. [221]
AgHe 1.3969125 0.00679322993 4.4391844 0.909659481 8.669 19.75 641.3 22020.0 Ref. [225]
XeF 3.44058805 30202.8963 125046.845 1.29988247 4.3478 51.1212328 971.8541 - Ref. [79]
KrF 1.88310506 1.326016 14.6602054 1.1394956 5.6711 35.1954218 584.676487 - Ref. [79]
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Table A4: Potential parameters α , β, γ, ζ and q determined for diatomic dications using Eq.(5). All in atomic units

Molecule α β γ ζ q
He++

2 2.19893097 21.3316218 0.279984035 3.6828207 0.712005705
BeH++ 0.614371674 0.883328762 0.109403265 1.64081594 2.9011314
AlH++ 0.423212447 0.217842583 0.0280432067 6.04865744 4.3704501
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Appendix B: Interatomic Pair-Potential Functions (1918-2013)

B.1. Top Pair-Potential Functions

Fig.B.1. presents the total citations of pair-potential functions developed from 1918 to 2013,
and Table B.1. list top pair-potential functions based on citations2. We can draw some
conclusions: (1) 1918 ∼ 1962, an active period for developing pair-potential functions; (2)
Highly cited Weeks-Chandler-Anderson (WCA, modified Lennard-Jones) potential developed
in 1971. (2) Highly cited Hartree-Fock-dispersion model developed in 1975. (3) celebrated
Tang-Toennies potential developed in 1984; (4) Korona potential (modified Tang-Toennies
potential) developed in 1997; (5) most functions are applied to spectroscopy; (6) Molecular
simulation still uses simple, functions such as WCA potential; (7) Rydberg-London potential
developed in 2004 has been cited as the reliable one in the field of molecular simulation (to
be noted, as present in section 1 and section 3 for the ground-states of H2, Li2, OH, NO, Ar2,
and Kr2, Rydberg-London potential is not as accurate as the potential we have developed in
this work); (8) potential functions are getting more and more complicate and involve many
parameters.

 0

 500

 1000

 1500

 2000

 2500

 0  20  40  60  80  100

T
ot

al
 C

ita
tio

ns

Potential Label Index

Morse (1929)
Weeks−Chandler−Andersen
(1971: Modified LJ)

Slater−Kirkwood (1931)
Eckart (1930)

Dunham (1932)

Rittner (1951)
Margenau (1939)

Kihara (1953)

Swalen (1962)

HFD (1975)
Tang−Toennies (1984)

Korona (1997)

Fig.B.1.: Total citations of interatomic pair-potential functions developed from 1918 to 2013. Potential Label Index refers to the

index listed in B.2 which presents the details of pair-potential functions.

2The citations for Lennard-Jones potential and some other potential functions are not accurate because
they are highly cited as classical equations in textbooks.Thus, they are ignored by authors without citing them.
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Table B.1.: Top pair-potential functions. Potential Label Index refers to the index listed in B.2 which list relevant potential

functions developed during the period of 1918 to 2013. The citations are based on the Web of Science dated November 2013.

Potential Label Index Potential Year Application Type Total Citations
54 Weeks-Chandler-Andersen 1971 Simulation 2554
6 Morse 1929 Spectroscopy, Simulation 2433
12 Dunham 1932 Spectroscopy 1688
63 Hartree-Fock-dispersion 1975 Spectroscopy 1024
9 Slater-Kirkwood van der Waals 1931 Simulation, Spectroscopy 962
81 Tang-Toennies 1984 Spectroscopy, Simulation 952
7 Eckart 1930 Scattering 910
28 Rittner 1951 Ionic Bonding, Spectroscopy 709
23 Margenau 1939 Simulation, Spectroscopy 700
33 Rice-Hirschfelder 1954 Simulation 604
53 Barker-Fisher-Watts 1971 Simulation 536
30 Kihara 1953 Simulation 535
3 Lennard-Jones 1924 Simulation 503
58 Simon-Parr-Finlan 1973 Spectroscopy 459
16 Pekeris 1934 Spectroscopy 453
15 Pöschl-Teller 1933 Spectroscopy 440
2 Kratzer 1922 Spectroscopy 390
34 Varshni III 1957 Spectroscopy 379
19 Hellmann 1935 Spectroscopy, Ionic Bonding 352
25 Hulburt-Hirschfelder 1941 Spectroscopy 343
22 Exp-6 1938 Spectroscopy, Simulation 308
42 Swalen-Ibers 1962 Spectroscopy 301
10 Rosen-Morse 1932 Spectroscopy 299
77 Improved HFD 1982 Spectroscopy 275
93 Korona et al. 1997 Spectroscopy 220
60 Murrell-Sorbie 1974 Spectroscopy 208
55 Generalized Morse 1972 Spectroscopy 204
92 Modified Tang-Toennies I 1995 Spectroscopy 199
52 Exp-spline-Morse-spline-vdW 1971 Spectroscopy 196
62 Morse-van der Waals 1975 Spectroscopy 180
29 Lippincott 1953 Spectroscopy 179
4 Fues 1926 Spectroscopy 162
74 Ogilvie 1981 Spectroscopy 156
64 Perturbed Morse Oscillator 1976 Spectroscopy 144
57 Maitland-Smith 1973 Spectroscopy, Smiulation 141
24 Linnett 1940 Spectroscopy 134
79 Extended Rydberg 1983 Spectroscopy 126
61 Thakkar 1975 Spectroscopy 125
76 Koide-Meath-Allnatt 1981 Spectroscopy 120
44 Varshni-Shukla II 1963 Spectroscopy, Ionic Bonding 120
40 Varshni-Shukla I 1961 Spectroscopy, Ionic Bonding 102
99 Bellert-Breckenridge 2002 Spectroscopy, Ionic Bonding 84
103 Morse-Long-Range 2006 Spectroscopy 64
97 Modified Lennard-Jones Oscillator 2000 Spectroscopy 56
98 Samuelis et al. 2001 Spectroscopy 45
100 Rydberg-London 2004 Simulation 13

B.2. List of Pair-Potential Functions

Advanced experimental techniques, with the help of semi-empirical or empirical analytical
potential functions [112–117], provide an efficient and direct approach to determine very accu-
rate interatomic potentials from the collected spectroscopy data. To date, many interatomic
pair-potential functions have been reported. All of them can be roughly summarized in five
kinds of analytical forms. The first three forms are: (i) the Dunham type expressed as a
Taylor expansion of the interatomic potential V (R) at the equilibrium internuclear distance
Re, (ii) suitable mathematical expressions such as Morse potential [6] that contain adjustable
parameters, and (iii) direct use of polynomials such as Chebychev polynomials [106]. Since
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different physical properties may be sensitive to different parts of the potential curve, a given
empirical or semi-empirical potential function with parameters that are calibrated for one
property, often describes other properties inadequately. The fourth form is a hybrid one such
as Lennard-Jones (LJ) [3], Tang-Toennies (TT) [80], Hartree-Fock dispersion (HFD) [66], and
Rydberg-London [98] potentials, which combine analytical potential functions in different in-
teraction regions. The four forms usually focus on describing either strongly or weakly bound,
covalent or ionic bound, neutral or singly-charged molecules and often lose their validity for
either small or relatively large internuclear distance. The last analytical form is the one that
uses piecewise analytical forms such as Exp-spline-Morse-spline-vdW (ESMSV) [51], in which
different potential functions in different ranges of R are splined together to give a continuous,
multi-parameter function defined for all R. Multi-parameter splined functions lack a certain
uniqueness. One must make often arbitrary decisions as to where one function ends and the
next begins.

In the following, we present in detail a list3 of interatomic pair-potential functions since
1918 when Born and Lande developed the Born-Lande potential function for ionic crystals.
The citation number is based on the Web of Science dated November 2013. R, De, and Re are
the internuclear distance, the dissociation energy and the equilibrium distance, respectively.

1. Born-Lande Function (Year 1918): Ref. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 19

V = − 1

R
+

b

Rn
. (6)

• Parameters: b, n

• Notes: Developed for investigating ionic crystals.

2. Kratzer Function (Year 1922): Ref. [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 390

V = De

(
1− Re

R

)2

(7)

• Parameters: De, Re

• Notes: (1) Simple; (2) Kratzer (1920) considered the series of inverse powers of R
and proposed above simplified formula; (3) Not applicable to molecular problems.

3. Lennard-Jones (LJ(n,m)) Potential (Year 1924): Ref. [3] . . . . . . . . . . . . . . . . Citations: 503

V =
De

n−m

(
m

(
Re

R

)n

− n
(

Re

R

)m
)

(8)

• Parameter Numbers: De, Re. Both n and m are usually fixed constant.

• Notes: (1) The repulsive forces dependent on the coefficient n and can be made
sufficiently soft. (2) Having been used by a number of researchers to represent
interatomic van der Waals potentials to hetero- and homo-nuclear complexes in a
wide range of R. (3). The Lennard-Jones potential has only two parameters. (4)

3It is not a full list. This list is only based on the knowledge of the present authors and the key functions
reported in the literature.
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The potential diverges when two atoms approach one another. (5) Bonding has no
directionality. (6) The twelfth-power term appearing in the potential is chosen for
its ease of calculation for simulations and is not physically based. (7) The sixth-
power term arises as a result of dipole-dipole interactions due to electron dispersion
in noble gasses (London dispersion forces), but it does not represent other kinds of
bonding well.

4. Fues Function (Year 1926): Ref. [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 162

V = W0 +
W1

R
+

W2

R2
(9)

• Parameters: W0, W1, W2

• Notes: (1) Simple, and spectroscopy only. (2) It is actually a special case of Kratzer
function (1922). (3) It is known to be a reasonably good representation of potential-
energy curves for diatomic molecules for R near Re, in spite of the fact that at
first glance the R−1, R−2 dependence of the potential seems overly strongly for
covalently bonded systems. (4) The force constants predicted by this potential are
surprisingly accurate. The predictions are quantitatively as good as calculations
with Hartree-Fock wavefunctions.

5. Mecke-Sutherland Function (Year 1927): Ref. [5] . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 53

V = − a

Rm
+

b

Rn
(10)

• Parameters: a, b, m, n.

• Note: (1) Sometimes, a fifth parameter d is introduced by putting R− d for R; (2)
Used to describe minima due to valence interactions as well as those due to van der
Waals interaction; (3) It appears that for series of related molecules, m and n can
be held constant.

6. Morse Potential (Year 1929): Ref. [6] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 2433

V = De

(
1− e−α(R−Re)

)2 −De (11)

• Parameters: De, Re, α

• Notes: (1) Simple; (2) Spectroscopy and Simulation; (3) Its frequent use is due to
the fact that the vibrational levels may be exactly calculated, and with reasonable
values for the parameters De, α, and Re, agree fairly well with observation for
many molecules; (3) V (R) not approaching to a finite value as R approaches zero;
(4) Morse potential falls off too fast at large R; (5) It cannot be adopted to give
a more accurate fit; (6) It cannot be made to faithfully reproduce the potential
curve shape in both short- and long-range limits; (7) Not suitable for using for a
randomly chosen molecule.

7. Eckart Function (Year 1930): Ref. [7] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 910

V = −abe−bR
(
ae−bR + 1

)−2
(12)
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• Parameters: a,b

• Notes: (1) Representing pure attraction or going through a minimum; (2) It is of
interested in scattering problems since the l = 0 phase shift can be given in a closed
form.

8. Rydberg Function (Year 1931): Ref. [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 45

V = −De (1 + b(R−Re)) e−b(R−Re) (13)

• Parameters: De, Re, b

• Notes: (1) Giving better performance than Morse or Hulburt-Hirschfelder function;
(2) V (R) goes to a finite value as R → 0; (3) spectroscopy only; (4) Until the 1970’s,
it was received full attention and modified Rydberg function was developed, for
example, Murrell-Sorbie (#60, 1974), extended Rydberg function I (# 79, 1983)
and II (# 80, 1984).

9. Slater-Kirkwood van der Waals Function (Year 1931): Ref. [9] . . . . . . . . . . Citations: 962

V = −C6

R6
(14)

• Parameter: C6

• Notes: (1) It was recognized that the van der Waals forces in gases have their origin
in a mutual polarization of the molecules4; (2). A calculation of van der Waal’s
potential of two atoms at large separation was carried out for hydrogen and helium;
(3) By means of above formula, the van der Waals cohesive pressure constant was
calculated for Ne, A, N2, H, O2, and CH4.

10. Rosen-Morse Function (Year 1932): Ref. [10]. . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 299

V = A tanh
(

R

d

)
− C sech2

(
R

d

)
(15)

• Parameters: A, d, C

• Notes: (1) Simple; (2) V (R) goes to a finite value as R → 0; (3) For hydrogen
halides, it gives results no better than Morse function; (4) see modified Rosen-
Morse function (# 109, 2012).

11. Davidson Function (Year 1932): Ref. [11] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 75

V = A
(

R

Re

− Re

R

)2

(16)

• Parameters: A, Re

• Notes:(1) keR
2
e = 8A which is satisfied by ground states of hydrogen halides; (2)

V (R) does not go to a finite value as R →∞; (3) Spectroscopy only.

4The idea was suggested by Debye [see, Debye, Phys. Zeits. 21, 178 (1920)], but his calculation of
intermolecular energies, based upon an electrostatic molecular model, did not meet with great success
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12. Dunham Function (Year 1932): Ref. [12] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 1688

V = a0ζ
2

(
1 + a1ζ + a2ζ

2 + a3ζ
3 + ...

)
(17)

where a0 = ω2
e

4Be
and ζ = (R−Re)/Re.

• Parameters: Re, a0, a1, a2, ...., an.

• Notes: (1) widely used for spectroscopy analysis; (2) The expansion cannot converge
for R > 2Re; (3) Blow up as R approaches ∞.

13. Born-Mayer Function (Year 1932): Ref. [13] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 19

V = be−R/σ − 1

R
(18)

• Parameters: b, σ

• Notes: (1) Developed for alkali halide crystals; (2) Acutally, the repulsive part
be−R/σ has been widely used in later model potentials such as Buchkingham (Exp-
6) (#22, 1938), Rittner potential (#28, 1951), Hartree-Fock dispersion potential
(#63, 1973), Tang-Toennies potential (#81, 1984), and so on.

14. Manning-Rosen-Newing Function (Year 1933): Ref. [14] . . . . . . . . . . . . . . . . . .Citations: 22

V = −Be−R/d + Ce−2R/d

(1− e−R/d)2
(19)

• Parameters: B, C, d

• Notes: (1) Simple; (2) Spectroscopy only; (3) Dissociation energy greater than that
given by Morse function; (4) Giving ωeχe higher value.

15. Pöschl-Teller Function (Year 1933): Ref. [15]. . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 440

V = A cosech2[α(R−Re)]−B sech2[α(R−Re)] (20)

• Parameters: A, B, Re, α

• Notes: (1) Simple; (2) Spectroscopy only; (3) Slightly superior to the Morse func-
tion.

16. Pekeris Potential (Year 1934): Ref. [16] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 453

V = De

(
1− e−α(R−Re)

)2
+ A

(
Re

R

)2

(21)

• Parameters: De, Re, α, A

• Notes: (1) Add a centrifugal term to the Morse function; (2) Spectroscopy only.

17. Hylleraas Function (Year 1935): Ref. [17] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 18

V = De

(
1− (1 + a)(1 + c)(z + b)

(z + a)(z + c)(1 + b)

)2

−De (22)

with z = e2(1+k)β(R−Re)/Re and 1
1+k

= 1
1+a

+ 1
1+c

− 1
1+b

.
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• Parameters: a, b, c, Re, De, β.

• Notes: (1) Giving Morse function for a = b, c = 0; (2) Giving Pöschl-Teller function
for k = 0; (3) Difficult to determine 6 parameters; (4) Spectroscopy only.

18. Huggins Potential (Year 1935): Ref. [18] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 25

V = ce−α(R−R12) − c
′
e−α

′
(R−Re) (23)

• Parameters: α, α
′
, c, c

′
, Re, R12.

• Notes: (1) The parameter α and R12 are chosen according to the inner-shell struc-
ture of the atom involved, and the others are determined from experiments; (3)
This is a modified Morse function; (3) The resulting curve seems valid over a wider
range of R than the unmodified Morse curve; (4) It can be used to justify Badger’s
rule; (5) Giving small values for higher anharmonicities and thus fail for cases where
they are not small; (6) Spectroscopy only.

19. Hellmann Potential (Year 1935): Ref. [19]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 352

V = A
e−αR

R
− 1

R
(24)

• Parameters: A, α

• Notes: (1) Developed for ionic bonding; (2) Repulsive part is described by a Pauli
repulsive term.

20. Wasastjerna Potential (Year 1935): Ref. [20] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 0

V = CR7e−βR − 1

R
(25)

• Parameters: C, β

• Notes: Developed for Na, K, Rb and Cs halide crystals.

21. Morse Oscillators (Year 1938): Ref. [21] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 51

V = De

∑

n≥2

Cn

(
1− e−α(R−Re)

)n
(26)

• Parameters: De, Re, α, Cn (n ≥ 2)

• Notes: (1) Flexible; (2) Spectroscopy only; (3) Difficult to determine the parameter
α; (4) Losing its significance as taking more terms.

22. Buckingham (Exp-6) Potential(Year 1938): Ref. [22] . . . . . . . . . . . . . . . . . . . . Citations: 308

V = Ae−bR − C6

R6
(27)

• Parameters:A, b, C6
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• Notes: (1) The generalized Ae−bR exponent form introduced by Born and Mayer in
1932 for crystal forces, has been most frequently used in representations of short-
range interatomic energy. (2) The Buckingham potential has been used extensively
in simulations of molecular dynamics discussing the properties of rare gases; (3)
Although the exponential term rises steeply as R decreases, it remains finite at
R = 0, so the dispersion term dominates at very small R, and the potential reaches
a maximum at a smaller value of R, and then tends to −∞ as R approaches 0.

23. Margenau Function (Year 1939): Ref. [23] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 700

V = ae−bR − ce−dR − e

R6
− f

R8
(28)

• Parameter: a, b, c, d, e, f

• Notes: (1) Its purpose is to investigate the fundamental question concerning the
additivity of first-order exchange and second-order van der Waals potentials; (2) It
shows that the value of the dipole-dipole coefficient in the Slater-Kirkwood formula
(#9, 1931) has been too high; (3) Highly cited as a model potential for studying
van der Waals complexes; (4) Spectroscopy and simulation.

24. Linnett Function (Year 1940): Ref. [24] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 134

V =
a

Rm
− be−nR (29)

• Parameters: a > 0, m, n, b > 0.

• Notes: (1) Buckingham (1938) and Margenau (1939) use this function with negative
a and b for the rare gases. (2) Representing a valence attraction and an electrostatic
repulsion; (3) Capable of giving rise to a low maximum between R = Re and
R →∞.

25. Hulburt-Hirschfelder Function (Year 1941): Ref. [25] . . . . . . . . . . . . . . . . . . . . Citations: 343

V = De

(
(1− e−x)2 + cx2e−2x(1 + bx)

)
with x =

ωe

2
√

BeDe

R−Re

Re

; (30)

• Parameters: Be, De, Re, ωe, c, b

• Notes: (1) b and c are simple algebraic functions of the five spectroscopic constants;
(2) A great advantage is that the five parameters can be readily obtained from
the study of band spectrum; (3) Not satisfactory in the region of R < Re; (4)
Spectroscopy only.

26. Wu-Yang Potential (Year 1944): Ref. [26] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 21

V = a e−mR − b

Rn
(31)

• Parameters: a, m, n, b

• Notes: (1) V (R) is not a finite value as R →∞; (2) V (R) goes to −∞ as R → 0;
(3) Spectroscopy only.
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27. Modified Buckingham-type Potential (Year 1947): Ref. [27] . . . . . . . . . . . . . . Citations: 76

V = Ae−bR − C6

R6
− C8

R8
(32)

• Parameters: A, b, C6, C8

• Notes: (1) The generalized Ae−bR exponent form introduced by Born and Mayer in
1932 for crystal forces, has been most frequently used in representations of short-
range interatomic energy; (2) This Buckingham potential has been used exten-
sively in simulations of molecular dynamics; (3) Although the exponential term
rises steeply as R decreases, it remains finite at R → 0, the dispersion term domi-
nates at very small R, the potential reaches a maximum, and then tends to −∞ as
R approaches 0; (4) Spectroscopy only.

28. Rittner Potential (Year 1951): Ref. [28] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 709

V = Ae−R/ρ − C

R6
− 1

R
− α+ + α−

2R4
− 2α+α−

R7
(33)

• Parameters: A, ρ, C, α+, α−

• Notes: (1) Developed for ionic bonding such as alkali halide and hydride molecules;
(2) when applied to other diatomic molecules, the results have been unsatisfactory.

29. Lippincott Function (Year 1953): Ref. [29] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 179

V = De

(
1− e−n(R−Re)2/(2R)

)
(1 + af(R)) (34)

• Parameters: De, n, Re, a

• Notes: (1) Useful in predicting unknown bond dissociation energies and anhar-
monicity constants for both diatomic and polyatomic molecules; (2) Spectroscopy
only.

30. Kihara Potential (Year 1953): Ref. [30] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 535

V = 4ε




(
σ − 2−1/6ρ

R− ρ

)12

−
(

σ − 2−1/6ρ

R− ρ

)6

 R ≥ ρ;

= ∞ R < ρ. (35)

• Parameters: ε, σ, ρ

• Notes: (1) It is a modified Lennard-Jones potential; (2) It has been claimed that
this potential function is the best three-parameter potential5

31. Frost-Musulin Function (Year 1954): Ref. [31]. . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 62

V = e−aR
(

1

R
− b

)
(36)

5R.D. Weir, Mol. Phys. 11, 97 (1966)
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• Parameters: a, b

• Notes: (1) Use Pauli-type repulsive term; (2) Spectroscopy only; (3) Satisfactory
results for H+

2 and H2.

32. Maitland-Smith Function (Year 1954): Ref. [32] . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 58

V =
De

n−m

(
men(1−R/Re) − n(Re/R)m

)
(37)

When m = 6, it turns to be Exp-6 potential model .

• Parameters: De, Re,

• Notes: (1) Generalized Buckingham-type potential; (2) For m = 6, it turns to be
Exp-6 potential; (3) Spectroscopy only.

33. Rice-Hirschfelder Potential (Year 1954): Ref. [33] . . . . . . . . . . . . . . . . . . . . . . . Citations: 604

V =
ε

1− 6/α

(
6

α
eα−αR

σ −
(

σ

R

)6
)

; R > σ

= ∞ R ≤ σ (38)

• Parameters: ε, α, σ.

• Notes: (1)This is actually a modification of exp-6 potential; (2) Useful for second
virial coefficient calculation.

34. Varshni III Function (Year 1957): Ref. [34] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 379

V = De

(
1− Re

R
e−β(R2−R2

e)
)2

(39)

• Parameters: De, Re, β

• Notes: (1) Spectroscopy only; (2) More accurate than Morse potential; (3) Not
applied to a wide range of R.

35. Modified Frost-Musulin Function (Year 1957): Ref. [35] . . . . . . . . . . . . . . . . . . . Citations: 4

V = e−aR
(

c

R
− b

)
(40)

• Parameters: a, b, c

• Notes: (1) Satisfactory results for H+
2 and H2; (2) For hydrides and homonuclear

molecules, the predicted third and fourth derivatives of V(R) at Re were not better
than Morse function; (3) Spectroscopy only.

36. Frost-Woodson Function (Year 1958): Ref. [36] . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 21

V =
c
′

R
+

(
c− c

′) e−aR

R
+ U(R) (41)

where U(R) is supposed to include exchange and dispersion energies.
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• Parameters: c
′
, c, a, and the coefficients in U(R).

• Notes: (1) Previously proposed for covalent diatomic molecules and extended to
apply to ionic molecules and to interaction of inert gas atoms; (2) A useful prediction
of the dissociation energy and internuclear equilibrium distance of ionic molecules;
(3) Spectroscopy only.

37. Buckingham Repulsive Function (Year 1958): Ref. [37] . . . . . . . . . . . . . . . . . . . Citations: 64

V = (ZAZB)p(R)
e−αR

R
(42)

with p(R) = 1 +
∑

k=1 pkR
k

• Parameters: α, ZA, ZB, p1, p2, ..., pk.

• Notes: (1) Developed for repulsive interaction only; (2) The region of R in which
the van der Waals interaction dominates is not well represented; (3) The coefficients
pi are not arbitrary.

38. Simplified Rittner Potential (Year 1960): Ref. [38] . . . . . . . . . . . . . . . . . . . . . . . Citations: 24

V = Ae−R/ρ − C/R6 − 1/R− αave/R
4 (43)

• Parameters: A, ρ, αave, C.

• Notes: (1) a simplified version of Rittner potential; (2) ionic bonding

39. Rittner-Lawley Potential (Year 1961): Ref. [39] . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 12

V = Ae−R/ρ − C

R6
− 1

R
− α+ + α−

2R4
− 2α+α−

R7
− L

R10
(44)

• Parameters: A, ρ, C, α+, α−, L.

• Notes: Developed for ionic bonding only.

40. Varshni-Shukla I Potential (Year 1961): Ref. [40] . . . . . . . . . . . . . . . . . . . . . . . Citations: 102

V = Be−kR2 − 1

R
(45)

• Parameters: B, k

• Notes: (1) Simple; (2) Developed for ionic bonding only.

41. Woolley Function (Year 1962): Ref. [41] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 72

R/Re = 1 + (V/De)
1/2(1 +

∑

n=1

cn(V/De)
n/2) (46)

• Parameters: Re, De, c1, ..., cn.

• Notes: (1)This is an equivalent form of Sanderman (1940); (2) Such a process of
root-taking gives fairly simple results for the Morse function R/Re = 1− a−1ln[1−
(V/De)

1/2] and for the Lennard-Jones 12,6 potential, R/Re = [1− (V/De)
1/2]−1/6.
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42. Swalen-Ibers Function (Year 1962): Ref. [42] . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 301

V =
1

2
ax2 +

1

2
bx4 + v0e

−cx2

(47)

• Parameters: a, b, c, v0.

• Notes: Developed only for a symmetric double well potential.

43. Clinton Function (Year 1962): Ref. [43] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations:35

V = λ1ln(λ2R)/Rλ3 (48)

• Parameters: λ1, λ2, λ3

• Notes: (1) Spectroscopy only; (2) Yielding a considerably better potential curve
than the Morse potential curve; (3) Having some theoretical foundation.

44. Varshni-Shukla II Function (Year 1963): Ref. [44] . . . . . . . . . . . . . . . . . . . . . . .Citations: 120

V = A
e−αR

R2
− 1

R
(49)

• Parameters: A, α

• Notes: Developed only for ionic bonding.

45. Preuss Function (Year 1964): Ref. [45] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 6

V = V (∞) +
ZAZB

R
+ (E0 − V (∞))

∑m−1
k=0 ckR

k

∑m
l=0 dlRl

(50)

with c0 = d0 = 1.

• Parameters: c1, c2, ..., cm−1, d1, d2,..., dm.

• Notes: (1) Deriving a highly accurate curve for H2 with 17 parameters and m = 9.
(2) Very limited application. (3) Spectroscopy only.

46. Varshni-Shukla III Potential (Year 1965): Ref. [46] . . . . . . . . . . . . . . . . . . . . . . .Citations: 99

V = ARne−αR − 1

R
(51)

• Parameters: A, α.

• Notes: (1) A generalized function for ionic bonding; (2) When n = −1,−2, 7, it
turns to Hellman, Varshni-II, and Wassastijerna potentials, respectively.

47. Varshni-Shukla IV Potential (Year 1965): Ref. [46] . . . . . . . . . . . . . . . . . . . . . . . Citations: 99

V = Be−kRp − 1

R
(52)

• Parameters: B, k, p
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• Notes: (1) Developed for ionic bonding; (2)when p = 2, it turns to Varshni-Shukla
I potential.

48. Waech-Bernstein Function (Year 1967): Ref. [47] . . . . . . . . . . . . . . . . . . . . . . . .Citations: 97

V =
32∑

n=0

an

(
R− 5

2.5

)n

(53)

• Parameters: a0, a1, ..., a32.

• Notes: (1) Adequately describe all bound and quasi-bound states of H2(
1 ∑+

g ). (2)
Spectroscopy only.

49. Parr-White Function (Year 1968): Ref. [48] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 32

V (λ) = w0 +
∞∑

n=1

(wn − wn−1)λ
n (54)

where λ = 1− Re

R
.

• Parameters: Re, w0, w1, ..., wn.

• Notes: (1)This is an extension of Fues potential (# 4, 1926); (2) The quantities wn

are obtained simply as perturbation energies for a purely kinetic-energy perturba-
tion at Re. (3) Giving a simple physical interpretation to the coefficients of Fues
potential, and also a derivation of the inverser power series by perturbation theory.

50. Redington Function (Year 1970): Ref. [49] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 22

V = A1e
−R/ρ + A2e

−R/(2ρ) + A3e
−R/(3ρ) −

(
1

R
+

α1 + α2

2R4
+

2α1α2

R7

)
− C6

R6
(55)

• Parameters: A1, A2, A3, ρ, α1, α2, C6.

• Notes: (1) Developed for ionic bonding; (2) Good for dissimilar ions, such as LiI,
CsF.

51. M-6-8 Potential (Year 1970): Ref. [50] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 74

V =
A

Rm
− C6

R6
− C8

R8
(56)

• Parameters: A, m, C6, c8

• Notes: (1)A four-parameter potential; (2) Developed for several fluids. (3) Better
than some more complex functions due to the addition of the eigth power attraction.
(4) Spectroscopy only.

52. Exp-spline-Morse-spline-vdW (ESMSV) (Year 1971): Ref. [51] . . . . . . . . . . Citations: 196

f(x) = V (R)/De; x = R/Re; (57)

f = A e−α(x−1), 0 < x ≤ x1;

f = ea1+(x−x1)(a2+(x−x2)(a3+(x−x3)a4)), x1 < x < x2;

f = e−2β(x−1) − 2e−β(x−1), x2 ≤ x ≤ x3

f = b1 + (x− x3)(b2 + (x− x4)(b3 + (x− x3)b4)), x3 < x < x4;

f = −c6x
−6 − c8x

−8 − c10x
−10, x4 ≤ x < ∞
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• Parameters:De, Re, A, α, β, x1, x2, x3, x4, c6, c8, c10, a1, a2, a3, a4, b1, b2, b3, b4

• Notes: (1) Use cubic spline functions to join the various pieces of the potential; (2)
Involve many parameters; (3) Spectroscopy only.

53. Barker-Fisher-Watts Function (Year 1971): Ref. [52] . . . . . . . . . . . . . . . . . . . . Citations: 536

V = eα(1−R/Re)
5∑

k=0

Ak

(
R

Re

− 1
)k

− ∑

n=6,8,10

Cn

δ + (R/Re)n
(58)

• Parameters: Re, α, δ, A0, A1, A2, A3, A4, A5, C6, C8, C10)

• Note: (1) δ is a small non-physical parameter introduced to suppress the spurious
singularity that would otherwise arise at R → 0. (2) Highly accurate interatomic
potential; (3) Specific to the noble gases such as Kr2; (4) Spectroscopy only. Xe2.

54. Weeks-Chandler-Anderson (WCA) Function (Year 1971): Ref. [53] . . . . .Citations: 2554

V = 4ε

((
σ

R

)12

−
(

σ

R

)6
)

+ ε R ≤ 21/6σ;

= 0 R > 21/6σ (59)

• Parameters: σ, ε

• Notes: (1) A modified Lennard-Jones potential; (2) Compared with the Lennard-
Jones potential, it is extremely short ranged so it can save considerable simulation
time than the long ranged Lennard-Jones potential; (3) Compared with the hard-
sphere potential, it is continuous and softer so it is more realistic than ideal; (4)
As the transport properties of fluids are dominated by repulsive interactions, the
essential physics is still retained by the WCA potential; (5) Not good for Xe2.

55. Generalized Morse Function (Year 1972): Ref. [54] . . . . . . . . . . . . . . . . . . . . . . Citations: 204

V = De

(
1− e−β(R)(R−Re)

)2 −De (60)

with β(R) = β0[1 + γ(R−Re) + λ(R−Re)
2]

• Parameters: De, Re, β0, γ, λ

• Notes: (1) Better than Morse potential providing an adequate representation of the
diatomic curves over the range of internuclear distances; (2) Spectroscopy only.

56. Morse-6 Hybrid Potential (Year 1972): Ref. [55] . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 44

V = 4ε(y2 − y) R ≤ qn;

= −C6/R
6 R > qn (61)

with y = exp[c(1 − R/σ)], where qn is the internuclear separation at which the two
potential pieces are joined together.

• Parameters: σ, ε, C6, c, qn.
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• Notes: (1) The subscript n on q denotes the order of the contact between the two
forms. If n = 0, the potential is guaranteed only to the continuous at R = q0;
n ≥ 1 means that the potential and its first n derivatives (with respect to R) are
continuous at R = qn. (2) As good as the very flexible Barker-Pompe-Bobetic
empirical potential. (3) Spectroscopy only.

57. Maitland-Smith (n0,n1) Function (Year 1973): Ref. [56] . . . . . . . . . . . . . . . . . . Citations:141

V =
De

n− 6

[
6

(
Re

R

)n

− n
(

Re

R

)6
]

(62)

with n = n0 + n1(
R
Re
− 1).

• Parameters: n0, n1, Re, De.

• Notes: (1) There is one restriction concerning relation between the n0 and n1

coefficients. (2) If the requirement V (R → 0) →∞ is to be satisfied, the condition
n0 ≥ n1 has to be fulfilled. Otherwise, n0 ≤ n1, at very small R, the function
reaches a maximum and then tends to −∞ as R Approaches 0.

58. Simon-Parr-Finlan Potential (Year 1973): Ref. [57]. . . . . . . . . . . . . . . . . . . . . .Citations: 459

V = a


ρ2 +

∑

j=3

bjρ
j


 (63)

with ρ = (R−Re)/R

• Parameters: a, Re, b3, b4, ..., bn

• Note: (1) The procedure is similar to the well-known Dunham method except that
the expansion parameter is (R−Re)/R instead of (R−Re)/Re. The new expansion,
which has a formal theoretical basis, is shown to be superior in terms of both rate
of convergence and region of convergence. (2) Extend to polyatomic molecules; (3)
Blow up at R = 0.

59. Pade Approximation (Year 1974): Ref. [58] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 73

V = [2, 2] =
d1ζ

2

1 + e1ζ + e2ζ2
(64)

with ζ = (R−Re)/Re.

• Parameters: Re, d1, e1, e2.

• Notes: Good for ionic bonds.

60. Murrell-Sorbie Function (Year 1974): Ref. [59] . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 208

V = −De(1 + a1R + a2R
2 + a3R

3)e−a1R (65)

• Parameters: De, a1, a2, a3.
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• Notes: (1) a1, a2 and a3 are obtained from the harmonic, cubic and quartic force
constants. (2) This potential is superior to the Hulburt-Hirschfelder potential when
tested on a least-squares basis against the spectroscopic RKR potential. (3) Suc-
cessfully representing singly charged diatomic ions. (4) Not satisfactory for double
charged diatomic ions.

61. Thakkar Potential (Year 1975): Ref. [63] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 125

V = a


ρ2 +

∑

j=3

bjρ
j


 (66)

with ρ = s(p)(1− (Re/R)p), where p is non-zero real number, and s(p) = 1 if p > 0, and
s(p) = −1 for p < 0.

• Parameters: a, p, Re, b3, b4, ..., bn.

• Notes: (1) If p = −1, the Thakkar potential coincides with the Dunham potential,
and if p = 1, it coincides with the Simons-Par-Finlan potential. (2) It is superior
to Dunham function or the Simons-Parr-Finlan function. (3) It is roughly as good
as the Huffaker function or an RKR potential. (4) An expansion in a series of
Lennard-Jones functions. (5) One fault of this function is occasional nonphysical
behavior at the repulsive wall.

62. Morse-van der Waals Potential(Year 1975): Ref. [64] . . . . . . . . . . . . . . . . . . . . Citations: 180

V = De

(
e−B(R−Re) − 1

)2 −De − C6(1− e−(R/Rc)12)
(

Rc

R

)6

. (67)

• Parameters: B, De, Rc, Re, C6.

• Notes: (1) Successfully applied to van der Waals complexes; (2) Spectroscopy only.

63. Hartree-Fock-dispersion (HFD) Potential (Year 1975): Ref. [66] . . . . . . . . Citations: 1024

V = Ae−αR−βR2 − F (R)
5∑

n=3

C2nR−2n (68)

with F (R) = e−(DR−1−1)2 for R < D and F (R) = 1 for R ≥ D.

• Parameters: A, α, β, D, C6, C8, C10

• Notes: (1) Proposed originally by Hepburn et al. (1975) and modified slightly by
Ahlrichs et al. (1977); (2) The Hartree-Fock part is obtained by SCF calculation
and uses Born-Mayer repulsion function to fit the SCF energy. (3) Successfully
applied to van der Waals complexes. (4) Spectroscopy only.

64. Perturbed Morse Oscillator (PMO) (Year 1976): Ref. [65] . . . . . . . . . . . . . . .Citations: 144

V = De

(
(1− e−aq)2 + b4(1− e−aq)4 + b5(1− e−aq)5 + ...

)
(69)

with q = R−Re. 75



• Parameters: De, Re, a, b4, b5, ...

• Notes: (1) Spectroscopy only; (2) a suitable representation of rotating vibrators;
(3) Suitable for fitting potentials with a minimum and a centrifugal type barrier.

65. Wicke-Harris Potential (Year 1976): Ref. [60] . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 48

V = De

(
1− e−B(R−Re)

)2
+ Ae−C(R−Rg)2 . (70)

• Parameters: De, Re, A, B, C, Rg.

• Notes: (1) Limited to an unsymmetric double minimum potential; (2) Spectroscopy
only.

66. Eaker-Parr Function (Year 1976): Ref. [61] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 37

V = Dee
−aβ x ± af(x)e−βx (71)

with f(x) = (1− bx)ebx(2−bx)/2 and x = R−Re.

• Parameters: a,b, Re, De,β

• Notes: (1) When a = 2 and b = 0, the function reduces to the usual Morse (−)
and anti-Morse (+) function. (2) The local minimum occurs at R = Re, and a
local maximum (if any) occurs at R > Re. (3) When this function is used, it forces
a local maximum (albeit small) even if there is none in the original curve. (4)
Spectroscopy only.

67. Schubert-Certain Function (Year 1977): Ref. [62] . . . . . . . . . . . . . . . . . . . . . . Citations: N/A

V = De

(
1− Re

R
e−β(Rp−Rp

e)
)2

−De (72)

• Parameters:De, Re, β, p,

• Notes: (1) Successful applied to H2 (X1 ∑+
g ) and CH (X1 ∑+). (2) Spectroscopy

only.

68. Kafri-Berry Function (Year 1977): Ref. [67] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 24

V = De

(
1− (Re/R)e−β(Rp−Rp

e)
)2 −De (73)

with β = β0(1 + F (R − Re)), where F (x) = b0e
−b1(x−b2)2 . One set of (b0, b1) for x < 0

and another set for x > 0.

• Parameters: De, Re, β0, b0, b1, b2

• Notes: (1) Since the Morse potential for the ground state of H2 is a poor fit to the
accurate potential at R < Re and even deviates significantly at long range (> 2Å),
Kafri and Berry proposed this function for solving the inadequacies of the Morse
function. (2) Spectroscopy only.
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69. Exp-Z4 Function (Year 1977): Ref. [68] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 20

V = Ae−BR − Z2α/(2R4) (74)

where α is the polarizability.

• Parameters: A, B, Z, α

• Notes: (1) Developed only for neutral-ionic interactions. (2) Spectroscopy only.

70. Engelke Potential (Year 1978): Ref. [69] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 48

V = a


ρ2 +

∑

j=3

bjρ
j


 (75)

with ρ = s(p)[1− ((R/Re + β)/(1 + β))−p].

• Parameters: Re, a, p, β, b3, ..., bn.

• Notes: (1) For β > 0, if p > 0, ρ has no singualarities on 0 ≤ R ≤ ∞; (2) Not offer
any advantage over the traditional series expansions. (3) Spectroscopy only.

71. Kafri Function (Year 1979): Ref. [70] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 6

V = De

(
1− Re

R
e−β(Rp−Rp

e)
)2

−De (76)

with β = β0(1 + F (R − Re)), where F (x) = A1e
−β1x for x < 0 and F (x) = (A2 +

A3x)e−β2(x−x0)2 for x ≥ 0.

• Parameters: De, Re, β0, β1, β2, p, A1, A2, A3.

• Notes: (1) An improved version for Kafri-Berry function (#68, 1977). (2) Spec-
troscopy only.

72. Beckel Function (Year 1980): Ref. [71] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 40

V [L/N ] =
p0 + p1R + ... + pLRL

1 + q1R + ... + qNRN
(77)

with free polynomial degree L and N = L + 6

• Parameters: L, p0, p1, ..., pL, q1, q2, ..., qL+6.

• Notes: (1) Yielding accurate results in the extrapolated region. (2) The value of
L in [L/N] is constrained, based on the long-range behavior of the potential. (3)
Spectroscopy only.

73. Mattera et al Function (Year 1980): Ref. [72] . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 44

V = a


ρ2 +

∑

j=3

bjρ
j


 (78)

with ρ = 1− (1 + γ(R/Re − 1)/p)−p (γ > 0).
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• Parameters:a, γ, Re, p, b3, ..., bn.

• Note: (1) high flexibility of its leading term V0 = d0(1 − (1 + γ(R/Re − 1)/p)−p)2

which reduces to the Lennard-Jones (p, 2p) and Morse potentials for p = γRe and
p = ∞, respectively. (2) Spectroscopy only.

74. Ogilvie Function (Year 1981): Ref. [73] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 156

V = a


ρ2 +

∑

j=3

bjρ
j


 (79)

with ρ = 2(R−Re)/(R + Re)

• Parameters a, Re, b3, ..., bn.

• Notes: (1) Spectroscopy only; (2) Having a finite value as R approaches 0 or infinity.

75. XC Model Potential (Year 1981): Ref. [74] . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: N/A

V = (1− γ(1 + 0.1R))E
(1)
C −

(
C6

F6(sR)

R6
+ C8

F8(sR)

R8
+ C10

F10(sR)

R10

)
G(sR) (80)

where G(sR) = 1 + 41.34e0.8588sR with s = 7.82/Re. Fn is a damping function and E(1)
c

is the first order Coulomb energy.

• Parameters: γ, Re, C6, C8, C10,

• Notes: (10 The damped dispersion behaves in a reasonable manner at very short
distances. (2) Spectroscopy only.

76. Koide-Meath-Allnatt Potential (Year 1981): Ref. [75] . . . . . . . . . . . . . . . . . . . Citations: 120

V = Ae−αR−βR2 −
5∑

n=6,8,10

FnCnR
−n (81)

with Fn(R) = [1− exp(−anR− bnR
2 − dnR

3)]n.

• Parameters: A, α, β, a6, a8, a10, b6, b8, b10, d6, d8, d10, C6, C8, C10

• Notes: (1) The damped dispersion behaves in a reasonable manner at very short
distances; (2) Involve many parameters; (3) Spectroscopy only.

77. Improved HFD Potential (Year 1982): Ref. [76] . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 275

V = Ae−αR−βR2 −
5∑

n=6,8,10

FnCnR
−n (82)

with Fn(R) = g(ρR)fn(ρR).

• Parameters: A, α, β, C6, C8, C10
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• Notes: (1) This is an improved version of Hartree-Fock dipersison (HFD) function.
(2) fn is supposed to be a universal damping function correcting for charge-overlap
effects (penetration) in the R−n term. (3) g is a universal function correcting for
exchange effects in all the dispersion terms. (4) ρ is a distance scaling factor. For
example, for the H...H dispersion interaction (ρ = 1): g(R) = 1− R1.68e−0.78R and

fn(R) = [1− e−2.1R/n−0.109R2/n1/2
]n. (5) Spectroscopy only.

78. Navati-Korwar Function (Year 1983): Ref. [77] . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 6

V = De

(
1− Re

R
e−β(R)(Rp−Rp

e)
)2

−De (83)

with β(R) = β0e
b((Re/R)2−1)+a((Re/R)−1).

• Parameters: De, Re, β0, a, b, p

• Notes: Having not been tested in fitting ab initio potentials or others.

79. Extended Rydberg Function I (Year 1983): Ref. [78] . . . . . . . . . . . . . . . . . . . . Citations: 126

V = De

(
1 + a1(R−Re) + a2(R−Re)

2 + a3(R−Re)
3
)
e−a1(R−Re) (84)

• Parameters: a1,a2, a3, De, Re.

• Notes: (1) Actually, it is Murrell-Sorbie function (#60, 1974) with R replaced by
R−Re; (2) It is better than Morse function in that in the polynominal multiplying
the exponential term. (3) Convergence can be checked by adding more terms.(4) It
is faster to obtain a direct nonlinear least squares fitting. (5) To locate the absolute
minimum in the sum of the squares of the deviation in the parameter space, a1 has
to be altered and the linear fit repeated if using linear fitting. (6) Spectroscopy
only.

80. Extended Rydberg Function II (Year 1984): Ref. [79] . . . . . . . . . . . . . . . . . . . . Citations: 46

V = De

(
1 + a1R + a2R

2 + a3R
3
)
e−a4R − tanh

(
R− Rm

2

) (
C6

R6
+

C8

R8
+

C10

R10

)
(85)

• Parameter Numbers: a1,a2, a3, a4, Rm, C6, C8, C10

• Notes: (1) Add dispersion terms to the extended Rydberg function I (#79, 1983).
(2) Successfully applied to rare-gas dimers. (3) Spectroscopy only.

81. Tang-Toennies Potential (Year 1984): Ref. [79] . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 952

Vtt(R) = Ae−bR −
∞∑

n≥3

fn(b, R)
C2n

R2n
(86)

with fn(b, R) = 1− e−bR ∑2n
k=0

(bR)k

k!
.

• Parameters: A, b, C6, C8, C10, ..., C2n.
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• Notes: (1) Having the merit of using no adjustable parameters; (2) Successfully
applied to van der Waals complexes; (3) Having four modified versions I, II, III,
and IV, which are listed in the following. (4) Spectroscopy and simulation.

82. Surkus-Rakauskas-Bolotin Potential (Year 1984): Ref. [81] . . . . . . . . . . . . . . . Citations: 41

V = a


ρ2 +

∑

j=3

bjρ
j


 (87)

with ρ = s(p)(Rp−Rp
e)/(R

p +nRp
e), where n and p are real numbers with the conditions

that n = −1 if p = 0.

• Parameters: a,p,n, b3, b4, ..., bn.

• Notes: (1) Developed for spectroscopy only; (2) The Dunham. Simons-Parr-Ftilan,
Thakkar and Ogilvie potenrials are particular cases of this function.(3) Reproducing
the potential curve with sufficient accuracy even for the cases of small expansion
length. (4) Involving many parameters.

83. Jordan-Siska Potential (Year 1984): Ref. [82] . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 15

V =
D

t− 1

(
e−tyQR(y)− te−yQA(y)

)
+ D

′
(88)

with y = β(R−Re)/Re and QA,R(y) = 1 + qA,R
4 y4 + qA,R

5 y5.

• Parameters: D, t, D
′
, β, Re,q

A
4 , qR

4 , qA
5 , qR

5 .

• Note: (1) For t = 2, D
′

= 0, and qA,R
4 = qA,R

5 = 0, it turns to be Morse po-
tential. (2) The Q’s modify the behavior of the function in the neighborhood of
the extremum beginning with the fourth derivative. (3) Choosing D

′
> 0 yields

a Morse function with a shifted asymptote. (4) Choosing t 6= 2 allows variation
of the repulsive exponent tβ. (5) Different from the Hulburt-Hirschfelder function,
the repulsive part of the standard Morse part is modified by using y4 and y5 terms.
(6) Spectroscopy only.

84. Wright Function (Year 1988): Ref. [83]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 17

V = De

∑

m≥2

am

(
1−

(
Re

R

)n

e−β(R)(R−Re)

)m

−De (89)

with β(R) = β0(1+λ1(R−Re)+λ2(R−Re)
2),

∑
m≥2 am = 1, n = 0, 1/2, 1 and m = 2, 3, 4.

• Parameters: De, Re, λ1, λ2, β0, a2, a3, a4 ...

• Notes: (1) When n = 0 and m = 2 and β(R) = β0, it turns to Morse function. (2)
When n = 1 and m = 2 and β(R) = β0, it turns to Varshni II function. (3) The
best 5-parameter functions are β(R) = β0(1+λ1(R−Re)+λ2(R−Re)

2), m = 2, and
n = 0, 1, 1/2, which are considerably superior to the Hulbert-Hirschfelder, extended
Morse, and extended Rydberg functions. (3) Spectroscopy only.
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85. Extended General Morse Function (Year 1988): Ref. [83] . . . . . . . . . . . . . . . . .Citations: 17

V = De


(1− e−β(R−Re))2 +

n∑

j=3

aj(1− e−β(R−Re))j


 (90)

with β = β0(1 + λ1(R−Re) + λ2(R−Re)
2).

• Parameters: De, Re, λ1, λ2, β0, a2, a3, a4 ...

• Notes: (1) Much stable; (2) Giving excellent fits to H2 and HF, much better than
Simons-Parr-Finlan (#58, 1973), Ogilvie (#74, 1981), and perturbed Morse oscil-
lator (#64, 1976). (2) Spectroscopy only.

86. Hua Function (Year 1990): Ref. [84] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 35

V = De

(
1− e−b(R−Re)

1− ce−b(R−Re)

)2

with b = a(1− c) (|c| < 1) (91)

• Parameters: De, Re, b, c

• Notes: As pointed out by Natanson6, Hua function is the well-known Tietz potential7,
which in turn is a combination of the Rosen-Morse (# 10, 1932), Morse (# 6, 1929),
and Manning-Rosen (# 14, 1933) potentials presented in a common form.

87. Zavitsas Potential (Year 1991): Ref. [85] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 37

V = De|e−2β±(R−Re) − 2e−β±(R−Re)| (92)

where β− = βM(1 + mu1/2) for R < Re and β+ = βM(1 + a1u
1/2 + a2u

n + a3u
3n + a4u

5n).

• Parameter Numbers: a1, a2, a3, a4, βM , n, βM , m, µ.

• Notes: (1) Needs bond dissociation energy, infrared stretching frequency, equilib-
rium internuclear distance, electronegativity difference, effective nuclear charges,
and masses. (2)Overall, deviations between calculated and reported potentials are
within a factor of 2 of the estimated uncertainties of reported RKR points. (3)
Applicable to polyatomic molecules. (3) Spectroscopy only.

88. Generalized Morse Oscillator (GMO) (Year 1991): Ref. [86] . . . . . . . . . . . . . . Citations: 60

V = De

(
1− e−βGMO(R)(R−Re

)2
(93)

with βGMO(R) =
∑

m=0 βGMO
m (R−Re)

m.

• Parameters: De, Re, βGMO
0 , βGMO

1 ,..., βGMO
n

• Notes: (1) Developed for spectroscopy only; (2) Successfully applied to diatomic
hydrides such as HBr and HI; (3) Involving many parameters.

6G. A. Natanson, Comment on ”Four-parameter exactly solvable potential for diatomic molecules”, Phys.
Rev. A 44, 3377 (1991)

7Tietz Function (Year 1963) Ref. [111] (citations: 35): V (R) = De + De
(a+b)e−2βR−be−βR

1+ce−βR ,
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89. Modified GMO (Year 1993): Ref. [87] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 56

V = De

(
1− e−β(R)

1− e−β(∞)

)2

(94)

with β(R) = Z
∑

i=0 βiz
i, β(∞) =

∑
i=0 βi, and z = (R−Re)/(R + Re).

• Parameters: De, Re, β0, β1, β2, β3, β4.

• Notes: (1) A modified GMO function (1991); (2) Developed for spectroscopy only;
(3) Successfully applied to AlCl and AlF.

90. Eggenberger Potential (Year 1993): Ref. [88] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 19

V = A e−bR +
a

R12
−

5∑

n=3

C2n

R2n
(95)

• Parameters: A, b, a, C6, C8, C10

• Notes: Applied in classical molecular dynamics simulations to study the thermo-
dynamical and structural properties of neon in the liquid and supercritical states.

91. Cvetko Potential (Year 1994): Ref. [89] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 43

V (R) =
C6

10
(b/3)6(ae−bR − χe−(2/3)bR − e−(1/3)bR), bR ≤ 16.6

V (R) =
C6

10
(b/3)6ae−bR − C6

R6 −Q2R4
, bR ≥ 16.6 (96)

• Parameters: a, b, Q, c6, χ.

• Notes: (1) Developed for vand der Waals atomic pairs; (2) Allows the potential
energy of a given pair to be estimated with good accuracy from ab initio density
functional calculations of the free-atom electron densities; (3) Spectroscopy only..

92. Modified Tang-Toennies I (Year 1995): Ref. [90] . . . . . . . . . . . . . . . . . . . . . . . . Citations: 199

V (R) = DR
7
2β
−1e−2βR −

∞∑

n=3

(
1− e−bR

2n∑

k=0

(bR)k

k!

)
C2n

R2n
(97)

where b = 2β − ( 7
2β
− 1)/R.

• Parameter: D, β, b, C6, C8, C10, ....C2n

• Notes: Modified Tang-Toennies potential for describing the ground state of He2.

93. Korona et al. Potential (Year 1997): Ref. [91] . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 220

V = Ae−αR+βR2 −
8∑

n≥3

fn(b, R)C2n/R2n (98)

with fn(b, R) = 1− e−bR ∑2n
k=0

(bR)k

k!
.
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• Parameters: A,α, β, b, C6, C8, c10, C12, C14, C16)

• Notes: (1) This is actually a modified Tang-Toennies potential. (2) Developed for
rare-gas atomic pairs.

94. Zhu-Wang Potential (Year 1997): Ref. [92] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 20

V =
a1

ρ− a2

− a3

ρ + a4

(99)

where ρ = R−Rmin is the displacement from the minimum Rmin for diatomic ions with
both potential minimum and maximum, and ρ = R only for the repulsive states.

• Parameters:a1, a2, a3, a4, Rmin

• Notes: Developed for describing the potential curves for doubly charged diatomic
ions with both potential minimum and maximum.

95. Molski Series (Year 1999): Ref. [93] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 21

V = a


ρ2 +

∑

j=3

bjρ
j


 (100)

with ρ = (R−Re)/(aRp + (1− a)Re), where a is a free fitting parameter.

• Parameters:a, Re, p, b3, b4, ..., bn.

• Notes: (1) This new expansion includes those of Dunham, SimonsParrFinlan, and
Ogilvie as special cases. (2) Spectroscopy only.

96. Modified Tang-Toennies II (Year 1999): Ref. [94]. . . . . . . . . . . . . . . . . . . . . . . . .Citations: 46

V (R) = Ae−b1R−b2R2 −
8∑

n=3

(
1− e−b

′
R

2n∑

k=0

(b
′
R)k

k!

)
C2n

R2n
(101)

where b
′
= b1 + 2b2R.

• Parameters: A, b1, b2, C6, C8, C10

• Notes: Modified Tang-Toennies potential for describing Alkaline-earth Rare gas
and Alkali-He systems

97. Modified Lennard-Jones Oscillator (Year 2000): Ref. [95] . . . . . . . . . . . . . . . . .Citations: 56

V = De

(
1− (Re/R)ne−βMLJ (z)z

)2
(102)

with βMLJ(z) =
∑M

m=0 βmzm and z = (R−Re)/(R + Re).

• Parameters: De, Re, β0, β1, ..., βM , n.

• Notes: (1) Developed for spectroscopy only; (2) Flexible because of involving many
paameters; (3)The model can be thought of as a generalization of the prototypical
Lennard-Jones (2n,n) function.
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98. Samuelis et al. Series (Year 2001): Ref. [96] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 45

V = −D + a0 +
∑

j=1

ajζ
j (103)

with ζ = (R−Re)/(R + bRe).

• Parameters: Re, b, a0, a1, ..., a39.

• Notes: (1) Developed for spectroscopy only; (2) more than 40 parameters for de-
scribing the ground state of Na2.

99. Bellert-Breckenridge (Year 2002): Ref. [97] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Citations: 84

V = Ae−bR − αRgZ
2

2R4
− C6

R6
− αRg,QZ2

2R6
+

BRgZ
3

2R7
− C8

R8
− αRg,OZ2

2R8
− γZ4

24R8
(104)

where Z is the effective charge on the ion, αRg, αRg,Q, αRg,O are the dipole, quadrupole,
and octopole polarizabilities of the rare-gas atom, BRg (negative value) is the higher-
order dipole-quadrupole polarizability of the rare-gas atom, γ is the higher-order second
dipole hyperpolarizability of the rare-gas atom, and C6 and C8 are Z-independent coef-
ficients representing the first and second-terms in the dispersion interaction.

• Parameters: A, b, αRg, αRg,Q, C6, C8, γ, BRg, αRg,O.

• Notes: Developed for the diatomic ions containing neutral rare-gas atom.

100. Rydberg-London Potential (Year 2004): Ref. [98] . . . . . . . . . . . . . . . . . . . . . . . . Citations: 13

V = a e−bR(1− cR)− d

R6 + eR−6
(105)

• Parameters: a, b, c, d, e

• Notes: (1) Much accurate than Morse, Lennard-Jones, and Hulburt-Hirschfelder
potentials, (2) Demonstrated that Rydberg-London potential is more reliable than
the Lennard-Jones potential to be used as starting geometries to obtain global
minima of atom clusters. (3) Not accurate for covalent molecules in the repulsive
and large-R region (4) V (R → 0) is given by a finite value.

101. Wang-Yang-Zhu Potential (Year 2004): Ref. [99] . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 8

V =

(
k∑

n=0

anR
n

)
e−ak+1R +

C

R
(106)

• Parameters: a0, a1, ..., ak, ak+1, C

• Notes: This function can be used to describe the potential curves for doubly charged
diatomic ions with both potential minimum and maximum, or without any station-
ary point.
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102. Xie-Gong Function (Year 2005): Ref. [100] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 13

E(R,α, β, γ) = E∞ +
J1(R, γ) + K1(R, α, β)

1 + S0(R)
(107)

with

J1(R, γ) = e−2γR
(

1

R
+ 1

)
,

K1(R,α, β) = e−αR
(

1

R
− βR

)
,

S0(R) = e−R

(
1 + R +

R2

3

)
,

known as the Coulomb, exchange, and overlap integrals, respectively, where α, β, γ are
the adjusting parameters, and E∞ is the total energy of the system at the infinity.

• Parameters: α, β, γ

• Notes: (1) Simple, and only 3 parameters; (2) Able to describe the ground states
of strongly or weakly bounded diatomic molecules with s-type or closed shell con-
stituents; (3) Able to describe the meta-stable states of diatomic dications.; (4) Not
accurate in the large- and short-R regions.

103. Morse-Long-Range Potential (Year 2006): Ref. [101] . . . . . . . . . . . . . . . . . . . . . Citations: 64

V = De

(
1− (uLR(R)/uLR(Re))e

−φ(R)yp(R)
)2

(108)

with

yp(R) = (Rp −Rp
e)/(R

p + Rp
e),

φ(R) = (1− yp(R))
N∑

i=0

φiyp(R)i + yp(R)φ∞,

uLR(R) =
Cn

Rn
+

Cm

Rm
,

φ∞ = ln(2De/uLR(Re)) = ln
(
2DeR

n
e /[Cn(1 + Qm,n/Rm−n

e )]
)

• Parameters: De, p, φ0, ..., φ8, φ∞, Cn, Cm

• Notes: (1) Successfully applied to the ground state of N2; (2) Involving many
parameters. (3) Spectroscopy only.

104. General Form of MLJ and MLR Potential (Year 2006): Ref. [102] . . . . . . . . . Citations: 2

V = De

(
1− ((1− b)(Re/R)n + b(Re/R)m) e−β(y)y

)2
(109)

with

β(y) = β0 + β1y + β2y
2 + β3y

3 + ...,

y = yp(R) = (Rp −Rp
e)/(R

p + Rp
e)
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• Parameters: De, Re, b, p, n, m, β0, β1, ...βn

• Notes: (1) A general form of MLJ and MLR potentials. (2) Developed for spec-
troscopy only. (3) Involving many parameters.

105. Even-Tempered Gaussian (ETG) Function (Year 2007): Ref. [103] . . . . . . . Citations: 19

V (R) =
4∑

k=0

ake
−αβkR2

(110)

where the coefficients ak are obtained by nonlinear regression and the exponent param-
eters α and β by nonlinear minimization.

• Parameters: a0, a1, a2, a3, a4, β, α

• Notes: (1) Successfully applied to describe the ground states of F2 and B2. (2)
Spectroscopy only.

106. Modified Tang-Toennies III (Year 2009): Ref. [104]. . . . . . . . . . . . . . . . . . . . . . .Citations: 22

V (R) = (A + BR + C/R + DR2 + ER3)e−αR+βR2 −
8∑

n=3

(
1− e−bR

2n∑

k=0

(bR)k

k!

)
C2n

R2n
+ Tdis

(111)

• Parameters: A, B, C, D, E, α, β, C6, C8, C10, C12, C14, C16

• Notes: Modified Tang-Toennies potential for describing the ground state of Be2.

107. Piecewise Continuous Approximants (Year 2010): Ref. [105] . . . . . . . . . . . . . Citations: 24

Vpw(R) = VIR(R) RSR ≤ R ≤ RLR;

= VSR(R) R < RSR;

= VLR(R) R > RLR; (112)

where

VIR =
N∑

i=0

ai((R−Re)/(R + αRe))
i,

VSR = u1 + u2/R
NS ,

VLR = −
L∑

i=1

CNi
/RNi + AexR

γe−βR

• Parameters: RLR, RSR, α, a0, a1, ..., a25, u1, u2, Ns, C6, C8, C10, C26, Aex, γ, β

• Notes: (1) Developed for spectroscopy only; (2) Successfully applied to Rb2; (3)
Involving many parameters.

108. Chebychev Polynomials (Year 2011): Ref. [106] . . . . . . . . . . . . . . . . . . . . . . . . . . . Citations: 7

V (R) = Tdis −
∑m

k=0 ckTk(yp)

1 + (R/Rref ))n
(113)
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where Tdis is chosen such that the potential minimum has energy zero and Tk(y) is the
Chebychev polynomials of first kind and −1 ≤ yp ≤ 1 is the reduced radial variable
given by

yp(R, Re, Rref ) =
Rp −Rp

ref

RP + Rp
ref − 2Re

• Parameters: c0, c1, ..., c24, Rref , Re, p

• Note: (1) Successfully applied to KCs; (2) Flexible due to may parameters. (3)
Developed for Spectroscopy only.

109. Modified Rosen-Morse Potential (Year 2012): Ref. [107] . . . . . . . . . . . . . . . . . . . Citations: 3

V = De

(
1− e2(Re−Rij)/d + 1

e2(R−Rij)/d + 1

)2

with Rij = Re −
√

KDe

ke

(114)

• Parameters: De, Re, Rij, d

• Notes: (1) This modified potential is found to be more accurate than the Morse
and Rosen-Morse potentials. (2) Spectroscopy only.

110. Generalized Morse Long-Range Potential (GMLR) (Year 2013): Ref. [108] .Citations: 1

V (R) = Te + De

(
a0Z

2(R) + a1Z
3(R) + a2Z

4(R) + ...
)

(115)

where

a0 = 1− ∑

n=1

an,

Z(R) = 1− (b0(Re/R)n1 + b1(Re/R)n2 + ...) e−β(y)y(R),

b0 = 1− ∑

n=1

bn,

β(y) = β0 + β1y + β2y
2 + ...,

y(R) =
Rp −Rp

e

εRp + αRp
e

• Parameters: De, Re, ε, α, p, β0, β1, ..., βn, b0, b1, ..., n1, n2, ..., a0, a1, ...,

• Notes: (1) A general version of Morse Long-Range potential. (2) Developed for
spectroscopy only. (3) Involves many parameters.

111. Modified Tang-Toennies IV (Year 2013): Ref. [109] . . . . . . . . . . . . . . . . . . . . . . . .Citations: 0

V (R) = Ae−bR −
∞∑

n=3

(
1− e−bR

2n∑

k=0

(bR)k

k!

)
C2n

R2n
+ Tdis (116)

where Tdis is chosen such that the potential minimum has energy zero and the R-
dependent parameter b is given by

b = b0 +
Rc

R + Rc

m∑

i=1

bi

(
R−Re

R + Re

)i
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• Parameters: A, b0, Re, b1, b2, ..., b6, Rc, C6, C8, C10

• Notes: (1) Developed for spectroscopy only; (2) Successfully applied to Mg2; (3)
Involves many parameters.

112. Modified Tang-Toennies V (Year 2013): Ref. [110]. . . . . . . . . . . . . . . . . . . . . . . . .Citations: 0

V (R) = Ae−bR + De−eR−fR2 −
8∑

n=3

(
1− e−bR

2n∑

k=0

(bR)k

k!

)
C2n

R2n
(117)

where the second term is a new term added to the Tang-Toennies potential.

• Parameters: A, b, D, e, f, C6, C8, C10, C12, C14, C16.

• Notes: (1) Modified Tang-Toennies function; (2) Applied to the ground state of
Be2.
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[165] R. Feltgen, H. Kirst, K. A. Köhler, H. Pauly, and F. Torello, J. Chem. Phys. 76, 2360 (1982).

[166] B. Liu and A. D. McLean, J. Chem. Phys. 91, 2348 (1989)

[167] R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991).

[168] J.B. Anderson, C. A. Traynor, and B.M. Boghosian, J. Chem. Phys. 99, 345 (1993).

[169] K. T. Tang, J. P. Toennies, and C. L. Yiu, Phys. Rev. Lett. 74, 1546 (1995).

[170] R.A. Aziz, W.J. Meath, and A.R. Allnatt, Chem. Phys. 78, 295 (1983).

[171] R.A. Aziz, M.J.Slaman, Chem.Phys.130, 187 (1989)

[172] R.J. LeRoy. M.L. Klein, and L.J. NcGee, Mol. Phys. 28 , 587 (1974); Y. Tanaka and K. Yoshino, J. Chem. Phys. 57, 2964
(1972).

[173] B. Fernandez and H. Koch, J. Chem. Phys. 109, 10255 (1998).

[174] R.A. Aziz, J. Chem. Phys. 99, 4518 (1993).

[175] K.T. Tang and J.P. Toennies, J. Chem. Phys. 118, 4976 (2003).

[176] D.R. Lide and H.V. Kehiaian, CRC Handbook of Thermophysical and Thermochemical Data (CRC Press, Boca Raton,
1994). pp.69-71.

[177] R. Islampour, M. Gharibi, and A. Khavaninzadch, J. Struct. Chem. 52, 664 (2011).
95



[178] K.K. Docken and T.P. Schafer, J. Mol. Spectro. 46, 454 (1973).

[179] P. R. Herman, P. E. LaRocque, and B. P. Stoicheff, J. Chem. Phys. 89, 4535 (1988).

[180] P. Slavek, R. Kalus, P. Paska, I. Odvarkova, P. Hobza, and A. Malijevsky, J.Chem.Phys. 119, 2102 (2003).

[181] J.M.C. Mareques, F.V. Prudente, F.B. Pereira, M.M. Almeida, A. M. Maniero and C E Fellows, J. Phys. B 41, 085103
(2008).

[182] K. Patkowski, G. Murdachaew, C.M. Fou, and K. Szalewicz, Mol. Phys. 103, 2031 (2005).

[183] A.K. Dham, W.J. Meath, A.R. Allnatt, R.A. Aziz, and M.J. Slaman, Chem. Phys. 142, 173 (1990).

[184] Y. Tanaka, K. Yoshino, and D. E. Freeman, J. Chem. Phys. 59, 5160 (1973).

[185] P. E. LaRocque, R. H. Lipson, P. R. Herman, and B. P. Stoicheff, J. Chem. Phys. 84, 6627 (1986).

[186] D. E. Freeman, K. Yoshino, and Y. Tanaka, J. Chem. Phys. 61, 4880 (1974).

[187] M.S.A. Kader, Chem. Phys. 352, 311 (2008).

[188] W.J. Balfour and R.F. Whitlock, Can. J. Phys. 53, 472(1975).

[189] C.R. Vidal, J. Chem. Phys. 72, 1864 (1980).
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