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a b s t r a c t

Based on a three-parameter molecular orbital-type pair-potential function, we have proposed a general-
ized interatomic pair-potential function. This new function has been demonstrated to be able to describe
accurately and adequately the potentials of the metastable diatomic dications (e.g., Heþþ2 , BeH++, AlH++),
and the ground states of covalent bonding systems (e.g., H2, Si2, HCl, NO, LiH, HeH+, and Heþ2 ), ionic bond-
ing systems (e.g., NaCl), and van der Waals weakly binding systems (e.g., rare-gas, alkaline-earth, group
12, rare-gas metal dimers, and rare-gas halides).

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The nature of interatomic potentials [1–6] determines the static
and dynamical properties of matter in solid, liquid and gas phases,
such as equilibrium geometry [2], threshold displacement energy
[5], chemical-reaction mechanism [4], heat conductivity [2], trans-
port coefficients [3], stability of biologic compounds DNA and RNA
[2], and high-density energy storage materials [6]. Further, in many
areas today, computer simulations [2–4] are becoming an integral
part of many research investigations and provide help in under-
standing various problems at atomistic levels, for example, explor-
ing macroscopic properties of gases under extreme conditions (e.g.,
hyper-high pressures, high temperature) [2] inaccessible for exper-
imental measurement. But they require the potential functions for
a wide range of interatomic separations [2]. Thus, interatomic
potential plays an important role in solving a wide class of prob-
lems in physics, chemistry, and biology.

Theoretically, interatomic potentials can be directly predicted
using advanced quantum-chemical approaches, more refined
mathematical methods, and high-speed computers [2]. In princi-
ple, very accurate potentials can be obtained for a wide range of
internuclear distances if sufficient electronic configurations are
included in electronic-structure calculations [2]. However, it may
be extremely time-consuming and prohibitively expensive in
acquiring the interatomic potentials for many-electron systems

or weakly bound van der Waals complexes [7]. Nevertheless,
advanced experimental techniques, with the help of semi-empiri-
cal or empirical analytical potential functions [1], provide another
efficient and direct approach to determine very accurate inter-
atomic potentials from the collected spectroscopy, scattering data,
or other measurements [1,7].

To date, many interatomic pair-potential functions (see section
B.2 List of Pair-Potential Functions in Appendix A) have been
reported. All of them can be roughly summarized in five kinds of
analytical forms: (i) Dunham-like Taylor expansions, (ii) suitable
mathematical functional expressions, (iii) polynomials, (iv) hybrid,
and (v) piecewise. The forms (i–iv) with potential parameters cal-
ibrated for one property predict other properties inadequately.
They focus on describing either strongly or weakly, covalent or
ionic bound, neutral, singly-, doubly-, or multiply-charged mole-
cules, and often lose their validity for either small or relatively
large internuclear distances. The form (v) uses piecewise analytical
forms, in which different potential functions in different ranges of
the internuclear distance R are splined together to give a continu-
ous, multi-parameter function defined for all R. Multi-parameter
splined functions lack a certain uniqueness [7]. One must make
several arbitrary decisions as to where one function ends and the
next begins.

On the other hand, an interatomic potential can be expressed in
many different analytical functional forms, but all accomplish the
same results that are in agreement with experiments [1,2]. In this
sense, the agreement between experiment and theory is not a suf-
ficient sign of the correctness and good accuracy of a constructed
pair-potential function, but only a necessary condition [1,2],
although higher degree of the said agreement may entail much
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better theory. This is supported by two known facts. The magni-
tude of the second virial coefficient is not sensitive to the form of
the potential-curve shape and its minimum position, but depends
only on the ratio between its well width and depth [2]. In the same
way, the viscosity coefficient is not sensitive to the dependence of
the potential on the separation distance at all [2]. Thus, for practi-
cal applications [1–5], is it possible to construct a unique pair-
potential function that is able to describe adequately and accurately
the interatomic potential for a wide range of separations and dia-
tomic systems? In this Letter, we are going to demonstrate the pos-
sibility of constructing a generalized interatomic pair-potential
function.

2. Generalized pair-potential function

A simple picture of the interatomic potential VðRÞ for a stable
diatomic system [1] presents a function curve with a minimum
Vmin at the equilibrium internuclear distance Re, a very sharp rise
towards the infinity as R! 0, and a less sharp rise towards the dis-
sociation limit as R!1. This establishes the basic criteria [1] that
a good interatomic potential must satisfy. In addition, a desirable
characteristics of a good potential function is that its analytical for-
mula is flexible enough to describe a unique function that may
have more local minima [8] or at least one local maximum and
one local/global minimum [6]. Recently, one of us has developed
a molecular-orbital-theory based three-parameter pair-potential
function (all equations and variables throughout this Letter, except
a special note, are in atomic units) [9]

EðRÞ ¼ E1 þ
J1ðR; cÞ þ K1ðR;a; bÞ

1þ S0ðRÞ
ð1Þ

with

J1ðR; cÞ ¼ e�2cR 1
R
þ 1

� �
;

K1ðR;a;bÞ ¼ e�aR 1
R
� bR

� �
;

S0ðRÞ ¼ e�R 1þ Rþ R2

3

 !
;

known as the Coulomb, exchange, and overlap integrals, respec-
tively, where a;b; c are the adjusting parameters, and E1 is the total
energy of the system at the infinity. We find that this simple func-
tion Eq. (1) is able to achieve the criteria and characteristics
addressed above. However, Eq. (1) is able to represent only the
interatomic potential of the systems with closed-shell and/or s-type
valence-shell constituents [10], but not for systems having p- or sp-
type valence-shell constituents. Further, the accuracies in the repul-
sive and attractive regions of this simple model, as pointed out in
our recent Letter [11], is not good. If it is able to reach a good accu-
racy and be applied to a wide range of diatomic systems, this three-
parameter potential model will be a good candidate to be used as a
base to construct a unique pair-potential function, which is able to
describe adequately and accurately the interatomic potentials of
broad systems for a wide range of R.

The interatomic interactions can be classified according to the
three ranges of interatomic separation R [1,2]: (a) a short-R range
at which the potential has a repulsive nature and the electronic
exchange dominates; (b) an intermediate-R range at which the
repulsive and attractive forces reach a balance; and (c) a large-R
range at which the electronic exchange is negligible and the inter-
molecular forces are attractive. In the short-R range, there is no dif-
ference between neutral and ion interaction [1]. In the large-R
range, however, there are important differences in the functional
forms of the interatomic potential [1], for example,

� Neutral closed-shell atoms have a van der Waals (vdW) interac-
tion energy which is asymptotic to the multipolar dispersion
expansions, i.e., �

P1
n¼3

C2n

R2n [1,12].
� The interaction of two atomic ions leads to an energy of C1

R [7].
� An atomic ion interacting with a neutral (non-polar) closed-

shell atom will result in an ion-induced dipole interaction

energy, � Z2a1

2R4 [7]. Higher-order terms include the ion-induced

quadrupole and dispersion interaction energy, � Z2a2

2R6 � C6

R6, the
ion-induced octopole, ion-hyperpolarizibility, and dispersion

interaction energy, � Z2a3

2R8 � Z2c1

24R8 � C8

R8, and so on, where Z is the
effective charge on the atomic ion, a1; a2, and a3 are the dipole,
quatrupole, and octopole polarizabilities, respectively, and c is
the second hyperpolarizability.

In the light of these facts, to achieve the adequate range of R, we
propose a generalized pair-potential form based on the simple
three-parameter potential [9] by adding the asymptotic induction
and dispersion terms. Moreover, to accomplish a good accuracy
of the three-parameter potential [9] and to extend it to cover a
wide range of the diatomic systems (e.g., with p-, sp-type
valence-shell constituents), we introduce new parameters g; f,
and q in the Coulomb J1ðRÞ and exchange K1ðRÞ integrals, and con-
sider that parameters a; b; c, and g all are R-dependent. Thus, we
have the generalized interatomic pair-potential function
(VðRÞ ¼ EðRÞ � E1, referencing to E1)

VðRÞ ¼ J1ðR; c0;g0; f; qÞ þ K1ðR;a0; b0; f; qÞ
1þ S0ðRÞ

� IðR;Re;vÞ
X1

n

Cn

Rn ð2Þ

with

J1ðR; c0;g0; f; qÞ ¼ e�2c0R f

Rq þ g0
� �

;

K1ðR;a0; b0; f; qÞ ¼ e�a0R f

Rq � b0R
� �

;

IðR;Re;vÞ ¼ N
R
Re

� �
1� e

� R
vRe

� �50
@

1
A;

where

c0 ¼ cð1þ
X
j¼1

kjR
jÞ;

a0 ¼ að1þ
X
j¼1

jjR
jÞ;

b0 ¼ bð1þ
X
j¼1

rjR
jÞ;

g0 ¼ gð1þ
X
j¼1

qjR
jÞ:

The term NðR=ReÞ is a sign function defined as N R
Re

� �
¼ þ1 (or

�1) if R=Re P 10�3 (or R=Re < 10�3), where Re is the equilibrium
distance. The number n in Eq. (2) is defined specifically by studied
cases, for example, n ¼ 6; 8; . . .for neutral closed-shell atoms. The
asymptotic � Cn

Rn term has an improper behavior in that it goes to
�1 as R! 0. This is due to the asymptotic nature of the induction
and/or dispersion expansions, which are only valid for the internu-
clear distances in which charge distributions do not overlap. To
eliminate the unrealistic behavior, a damping term similar to Ref.

[13], 1� e
� R

vRe

� �5

with a damping parameter v and a sign function

N R
Re

� �
, is introduced in front of the sum of Cn

Rn terms.

To process the experimental or ab initio data, the analytical form
of this interatomic pair-potential function Eq. (2) depends upon
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the case under study. In the following, we discuss specifically five
cases.

2.1. Covalent bonding: neutral systems

Covalent bonding is the sharing of electrons between atoms. Its
binding energy is typically on the order of electron volts (eV)
(hydrogen bonds are about an order of magnitude weaker, and
vdW bonds are much weaker). First, we apply the new potential
function Eq. (2) to represent neutral covalent bonding systems.
For practical applications [2], we keep in mind throughout this Let-
ter that the potential function must involve as few as possible
potential parameters. For neutral covalent bonding systems, we
set, in general, c ¼ 2a; f ¼ q ¼ 1, k1 ¼ j1 ¼ j; kj ¼ jj ¼ 0 (j P 2
integer), and qj ¼ rj ¼ 0 (j P 1 integer), and do not include the
induction and dispersion terms. Then, we have a four-parameter
(a; b; g; j) interatomic pair-potential function for neutral cova-
lent systems

VðRÞ ¼ J1ðR;a;j;gÞ þ K1ðR;a;j;bÞ
1þ S0ðRÞ

ð3Þ

with

J1ðR;a;j;gÞ ¼ e�4aRð1þjRÞ 1
R
þ g

� �
;

K1ðR;a;j; bÞ ¼ e�aRð1þjRÞ 1
R
� bR

� �
:

2.2. Covalent bonding: ionic systems

For ionic covalent-bonding systems, we define q ¼ 1, and
kj ¼ jj ¼ qj ¼ rj ¼ 0 (j P 1 integer). In the long range, as

addressed before, it may include the terms [7] of C1
R ,

� Z2a1

2R4 ;� Z2a2

2R6 � C6

R6 �
Z3a02
2R7 , � Z2a3

2R8 � Z4c1

24R8 � C8

R8 (a02 is the dipole-quadru-

pole polarizability). For convenience, we designate them as C1
R ,

C4

R4 ;
C6

R6 ;
C7
R7, C8

R8 with only a single parameter Cn for each Cn
Rn term. Thus,

the potential function is

VðRÞ ¼ J1ðR; c; f;gÞ þ K1ðR;a; f; bÞ
1þ S0ðRÞ

� IðR;Re;vÞ
X

n

Cn

Rn ð4Þ

with

J1ðR; c; f;gÞ ¼ e�2cR f
R
þ g

� �
;

K1ðR;a; f;bÞ ¼ e�aR f
R
� bR

� �
:

2.3. Ionic bonding systems

Ionic bonding, a type of chemical bond that generates two
oppositely charged ions, is a complete transfer of valence electron
(s) between atoms. Thus, the net charge of the compound (e.g.,
NaCl, KCl) must be zero. Pure ionic bonding cannot exist. The term
ionic bonding is given when the ionic character is greater than the
covalent character. Thus, it is necessary to involve the covalent
character in developing a model potential for ionic bonding sys-
tems. The pair potential functions such as Rittner, Varshni-Shukla,
and Bellert-Breckenridge potentials listed in Appendix A were
developed only for pure ionic bonding systems by combining a
Born–Mayer [14] repulsive term with the induction and dispersion
terms. Here we apply the generalized potential function Eq. (2) to
describe the ionic bonding systems. The proposed potential func-
tion is the same as Eq. (4).

2.4. Weakly bound van der Waals systems

One can discuss diatomic bonds by means of the virial theorem
[7]. Weakly bound vdW diatomic systems establish their equilib-
rium positions over a relatively shorter distance (measured in
the units of Re) than do chemically bond molecules, and the onset
of repulsion is relatively more abrupt for a weak bond. These
effects are what one expects in the absence of extensive charge
delocalization during bonding [7]. However, the partially covalent
nature has been shown in vdW diatomic systems such as NaAr,
LiHg, and XeF [7]. As demonstrated in Ref. [10], the potentials of
the ground states of the strongly and weakly bound molecules in
the potential-well region can be described approximately by a sin-
gle reduced binding-energy relation [10], i.e., a reduced Rydberg

function, �ð1þ
ffiffiffi
2
p

R�Þe�
ffiffi
2
p

R� , where R� ¼ R�Re
L2

and L2 ¼
ffiffiffiffiffiffi
2De
f2

q
(De,

the dissociation energy; f2, the second force constant). This reduced
function is also a good representation of the potential curves of
covalently bonded materials [10]. In this sense, the partially cova-
lent nature should be considered in developing a pair-potential
function for weakly bounded vdW complexes. Thus, for the vdW
systems, we define c ¼ a; f ¼ q ¼ 1, and kj ¼ jj ¼ qj ¼ rj ¼ 0
(j P 1 integer). The potential function in terms of the long-range
expansions of electrostatic, induction and dispersion interactions is

VðRÞ ¼ J1ðR;a;gÞ þ K1ðR;a;bÞ
1þ S0ðRÞ

� IðR;Re;vÞ
X1

n

Cn

Rn ð5Þ

with

J1ðR;a;gÞ ¼ e�aR 1
R
þ g

� �
;

K1ðR;a;bÞ ¼ e�aR 1
R
� bR

� �
:

Different from our recent Letter [15] where
J1ðR; c;gÞ ¼ e�2cR 1

Rþ g
� �

, the above potential function Eq. (5) has
reduced the parameter c to a, i.e., setting c ¼ a=2. To be noted, if
the coefficients Cn are not available in the literature, they can be used
as adjusting parameters (see the case study of LiHe� in Section 4.6.3
in Appendix A). In fact, Eq. (5) can be re-organized as follows

VðRÞ ¼ PðRÞ e
�aR

R
þ Qðg;RÞe�aR 1� b�Rð Þ � IðR;Re;vÞ

X1
n

Cn

Rn ð6Þ

with PðRÞ ¼ 2
1þS0ðRÞ

;Qðg;RÞ ¼ g
1þS0ðRÞ

, and b� ¼ b
g. The first term, PðRÞ e�aR

R

in Eq. (6), is a Pauli-type potential, but with an R-dependent coeffi-
cient PðRÞ. Hellmann (1935), Frost-Musulin (1954), Frost-Woodson
(1958), Varshni-Shukla III (1965) potentials and Buckingham
(1958) repulsive potential (see the potential list in Appendix A) have
the Pauli-type repulsion term. The second term, Qðg;RÞe�aR 1� b�Rð Þ,
is the Rydberg (1931) potential listed in Appendix A, but with an R-
and g-dependent coefficient Qðg;RÞ. Thus, we also call this newly
constructed potential function Eq. (5) or Eq. (6), Pauli-Rydberg-
vdW (PRvdW) potential. Further, the above Eq. (6) includes a
Born–Mayer repulsive term, Qðg;RÞe�aR [14], but with an R- and g-
dependent coefficient Qðg;RÞ. To be noted, the well-known Tang-

Toennies potential [12], VðR;A; bÞ ¼ Ae�bR �
P

nP3fnðb;RÞ C2n

R2n where

fnðb;RÞ is a damping function, employs the Born–Mayer potential

Ae�bR as the repulsive term, but with a constant coefficient A.

2.5. Meta-stable systems

The diatomic dications, XY++, are widely described by two pos-
sible situations, corresponding to the attractive (X++ + Y) and repul-
sive (X+ + Y+) dissociation limits [6]. The polarization of Y by X++

always leads to attractive interactions. Coulomb repulsion is
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always present, and in addition, covalent bonding for some mole-
cules may exist between two mono-positive atomic ions. In gen-
eral, such bonding interactions may lead to meta-stable
potentials which have a local minima and a barrier. Here we dem-
onstrate that the new potential form Eq. (2) with only five param-
eters a; b; c; f and q (setting g ¼ 1; kj ¼ jj ¼ qj ¼ rj ¼ 0, j P 1
integer,) and without including the induction and dispersion terms
is able to represent accurately the potential curves of meta-stable
diatomic systems. The proposed potential function for meta-stable
diatomic dications is

VðRÞ ¼ J1ðR; c; f; qÞ þ K1ðR;a;b; f; qÞ
1þ S0ðRÞ

; ð7Þ

with

J1ðR; c; f; qÞ ¼ e�2cR f

Rq þ 1
� �

;

K1ðR;a;b; f; qÞ ¼ e�aR f

Rq � bR
� �

:

3. Results and discussions

In Appendix A, we provide details on the case study and Fortran
90 source codes for determining the potential parameters. All
parameters for the case study are summarized in Appendix A

(Table A1, A2, A3, A4). To be noted, for cases that are not fitted
in any of the five cases, the generalized function form Eq. (2) can
be applied directly.

3.1. Covalent bonding: neutral systems

In Section 1 of Appendix A, we have demonstrated that Eq. (3) is
able to describe accurately the potentials of the ground states of
diatomic molecules (e.g., H2, B2, Li2, C2, N2, F2, Si2, HCl, LiH, BeH,
CH, NH, OH, InH, CO, NO, SiO, LiNa) with p- and sp-type valence-
shell constituents as well as closed-shell and s-type valence-shell
constituents for a wide range of R. All parameters for this case
study are summarized in Table A1 of Appendix A.

Here we take the ground state of H2 as an example. We first com-
pute the potential energy of the ground-state H2 by using the cou-
ple cluster method with single and double excitation (CCSD) [16]
and basis set aug-cc-pV5Z (augmented correlation-consistent
core-valence basis sets up to quintuple-zeta quality) implemented
in GAUSSIAN 09 package [17]. As shown in Figure 1, our CCSD/aug-cc-
pV5Z calculations are in excellent agreement with the exact data
[18]. Then, we fit the CCSD/aug-cc-pV5Z data by using Eq. (3). The
Root-Mean-Square (RMS) for this fitting is 0.00046, and four poten-
tial parameters are determined to be a ¼ 1:24179616; b ¼
1:91867424;j ¼ 0:0478910411, and g ¼ 2:8004031. Figure 1 pre-
sents our fitted potential energy curve (PEC), which agrees well
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Figure 1. The comparison between 4-parameter potential (this Letter) (Red line, a ¼ 1:24179616, b ¼ 1:91867424; j ¼ 0:0478910411, and g ¼ 2:8004031), 3-parameter
potential (Orange line, Ref. [9], a ¼ 1:5065756; b ¼ 2:48475652, and c ¼ 1:45), 5-parameter potential (Blue line, Ref. [11], a ¼ 1:519; b ¼ 2:0478,
c ¼ 1:785; n ¼ 0:795; f ¼ 1:005), Rydberg-London potential (Green line, Ref. [19], a ¼ 53:8; b ¼ 2:99; c ¼ 2:453; d ¼ 3:884, and e ¼ 47:6), CCSD/aug-cc-pV5Z (Dark line),
and the exact data (Dark filled circles, Ref. [18]) for the ground state of H2: (a) Short-R; (b) Intermediate-R; (c) Large-R regions. To be noted, CCSD results in (a) overlap with
the four-parameter potential. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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with the exact data [18]. Also, in the short- and large-R regions, as
shown in Figure 1a and c, respectively, our four-parameter poten-
tial is greatly improved in accuracy over the three-parameter [9]
and and five-parameter [11] potentials.

Ten years ago, Cahill and Parsegian [19] demonstrated that their
constructed five-parameter Rydberg-London (RL) potential for the
ground-state H2 is five times more accurate than Morse [20], Vars-
hni [21], and Hulburt–Hirschfelder [22] potentials, and are four
orders of magnitude more accurate than Lennard-Jones (LJ) [23]
and harmonic potentials. In Figure 1, we compare our four-param-
eter potential with RL potential. In the intermediate-R region (Fig-
ure 1b), RL potential except a visible deviation in the bottom of the
potential well overlaps with our four-parameter potential curve.
However, RL potential [19] is much softer in the short-R region
(Figure 1a) than our four-parameter potential, and displays a dis-
cernible deviation in the large-R region (Figure 1c). It concludes
that our four-parameter potential is more accurate than five-
parameter RL potential.

Rydberg–Klein–Rees (RKR) [24–26] turning points and vibra-
tional levels provide accurate reference standards for assessing
the quality of a potential-energy curve [1]. Thus, we have calcu-
lated the vibrational energies for the ground-state H2 by using
the four-parameter potential function. The numerical results are
summarized in Table 1 and compared with the literature data.
We find that our computed vibrational energies are within a rela-
tive error of less than 1% and 3% for the vibrational levels
m ¼ 0;1; . . . ;12 and m ¼ 13;14 levels, respectively, compared to
experiment [27]. It shows that the present four-parameter poten-
tial is more accurate than three-parameter [9], five-parameter
[11], and RL [19] potentials.

3.2. Covalent bonding: ionic systems

The long-range ion/induced-dipole force (represented by C4

R4

term) is a major attractive force between atomic ion and neutral
atom, especially at a large R. In Section 2 of Appendix A, we have
demonstrated that Eq. (4), with the inclusion of � C4

R4 only, is able
to describe accurately and adequately the potentials of the ground
states of covalently bounded HeH+, Hþ2 , Heþ2 , BeH+, BeH�, and LiH�

for a wide range of R. All parameters for this case study are summa-
rized in Table A2 of Appendix A. Here we present the results of
HeH+.

According to the standard Big Bang model, the helium hydride
ion, HeH+, is the first molecule, formed in the Universe. This
HeH+ is a relatively simple hetero-nuclear molecular ion, isoelec-
tronic with H2, which makes it of a fundamental significance from
the theoretical point of view. The first accurate variational calcula-
tions of the Born–Oppenheimer potential of HeH+ was reported by
Wolniewicz [28], and then refined by Kolos and Peek [29]. To date,
there have been extensive quantum chemical calculations on this
system (see literature review in Ref. [30,31]). In the ground elec-
tronic state, both electrons are mostly centered around the a
nucleus with the proton distance from a being about
R � 1:46 Bohr. Very recently, Pachucki [31] has demonstrated high
accuracy calculations for the the ground state of HeH+ using ana-
lytic formulas for two-center two-electron integrals with exponen-
tial functions (The potential is obtained in the range of 0.1�60 a.u.
with precision of about 10�12 a.u.).

In this Letter, we first compute the PEC of the ground state of HeH+

using CCSD/aug-cc-pV5Z and then fit it using the new potential func-
tion given by Eq. (4). The RMS for this fitting is 0.0003, and the potential
parameters are determined to be a ¼ c ¼ 1:94869912; b ¼
2:60094136; f ¼ 2:04347269; g ¼ 1:78190656; C4 ¼ 0:709265297,
and v ¼ 2:64764358. Since C4 ¼ a1=2, the dipole polarizability of He
atom is derived to be a1 ¼ 2C4 ¼ 1:418530594, which agrees well
with the literature value (a1 ¼ 1:3796, or 1.4870) [32]. The fitting
results are presented in Figure 2. The fitted PEC except a slight devia-
tion at R ¼ 4 � 6 Bohr shown in Figure 2c overlap very well with
CCSD/aug-cc-pV5Z data points and the most accurate data [31]. The
new potential curve is greatly improved in accuracy over the three-
parameter potential curve [9] in the repulsive and attractive regions.

We calculate the vibrational energies for the ground state HeH+,
and the numerical results are summarized in Table 2. In total, we
have obtained 12 vibrational levels as reported in Ref. [30,31,33].
The relative error of calculated vibrational energies by using the
present potential are less than 2% for all the levels m ¼ 0� 11, com-
pared to the accurate data [31].

3.3. Ionic bonding systems

Taking the ground state of NaCl as an example, we fit its exper-
imentally determined potential [34]. The RMS for this fitting is
0.00248 (here C4; C6, and C7 are taken as fitting parameters). The
fitted potential curve, as shown in Figure 3, agrees well with exper-
iment [34]. The computed vibrational energies for isotopes Na35Cl

Table 1
The calculated vibrational energies for the ground state of H2 using four-parameter (this Letter, a ¼ 1:24179616; b ¼ 1:91867424, j1 ¼ 0:0478910411, and g ¼ 2:8004031),
three-parameter [9] (a ¼ 1:5065756, b ¼ 2:48475652; c ¼ 1:45), five-parameter [11] (a ¼ 1:519; b ¼ 2:0478; c ¼ 1:785; n ¼ 0:795, f ¼ 1:005), and Rydberg-London [19]
(a ¼ 53:8; b ¼ 2:99; c ¼ 2:453, d ¼ 3:884, and e ¼ 47:6) potentials. The value in the parenthesis is the relative error (d ¼ jTheory�Experimentj

Experiment ) of the calculation, compared to
experiment [27].

m Exp. Three-parameter Five-parameter Rydberg-London Four-parameter
(Ref. [27]) (Ref. [9]) (Ref. [11]) (Ref. [19]) (this Letter)
[eV] [eV] (%) [eV] (%) [eV] (%) [eV] (%)

0 �4.4774 �4.4628 (0.33) �4.4849 (0.17) �4.5247 (1.06) �4.4852 (0.17)
1 �3.9615 �3.9218 (1.00) �3.9500 (0.29) �3.9779 (0.41) �3.9661 (0.12)
2 �3.4747 �3.4166 (1.67) �3.4457 (0.83) �3.4729 (0.05) �3.4750 (0.01)
3 �3.0166 �2.9465 (2.32) �2.9724 (1.46) �3.0101 (0.22) �3.0123 (0.14)
4 �2.5866 �2.5111 (2.92) �2.5307 (2.16) �2.5856 (0.04) �2.5783 (0.32)
5 �2.1847 �2.1099 (3.42) �2.1211 (2.91) �2.1899 (0.24) �2.1734 (0.52)
6 �1.8110 �1.7427 (3.77) �1.7442 (3.69) �1.8169 (0.33) �1.7981 (0.71)
7 �1.4661 �1.4093 (3.87) �1.4008 (4.46) �1.4673 (0.08) �1.4532 (0.88)
8 �1.1508 �1.1097 (3.57) �1.0916 (5.14) �1.1460 (0.43) �1.1396 (0.97)
9 �0.8665 �0.8439 (2.61) �0.8178 (5.62) �0.8578 (1.00) �0.8583 (0.94)
10 �0.6153 �0.6123 (0.49) �0.5804 (5.68) �0.6068 (1.38) �0.6109 (0.71)
11 �0.4000 �0.4155 (3.88) �0.3806 (4.84) �0.3957 (1.08) �0.3994 (0.14)
12 �0.2245 �0.2543 (13.27) �0.2203 (1.89) �0.2271 (1.16) �0.2266 (0.93)
13 �0.0945 �0.1301 (37.67) �0.1013 (7.16) �0.1031 (9.10) �0.0966 (2.25)
14 �0.0174 �0.0452 (159.77) �0.0264 (51.78) �0.0264 (51.72) �0.0169 (2.73)
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and Na37Cl listed in Table 3.1 of Appendix A are also in good agree-
ment with experimentally determined energies [34].

3.4. Weakly bound van der Waals systems

In Section 4 of Appendix A, we have successfully applied Eq. (5) to
describe accurately the triplet states of the weakly bounded H2 and
NaK, and the ground states of 25 weakly bounded vdW complexes
such as rare-gas dimers (He2, Ne2, Ar2, Kr2, Xe2), alkaline-earth
dimers (Mg2, Ca2, Sr2), metal-rare gas dimers (LiHe, LiAr, NaAr, KAr,
NaKr, CaHe), group 12 dimers (Zn2, Cd2, Hg2), rare-gas halides (XeF,
KrF), and others (LiHg, CdNe, HeH, NeH, AgHe, LiHe�) for a wide range

of R. All parameters for this case study are summarized in Table A3 of
Appendix A. Here we present Ar2 and Mg2 as two examples.

The interatomic potential for the ground state of Ar2 is as well
characterized as that for many common stable diatomics, experi-
mentally by using several spectroscopic techniques and theoreti-
cally by using ab initio techniques [35]. The most accurate
potential energy curve of its ground state was experimentally deter-
mined by Aziz [36]. Thus, we use Eq. (5) and the dispersion coeffi-
cients C6; C8 and C10 of Ref. [37] to fit directly the accurate data of
Aziz [36]. The RMS of this fitting is 0.0151, and the potential
parameters are determined to be a ¼ 1:5069144, b ¼ 19:2457331;
g ¼ 126:019972, and v ¼ 1:28100922. Our fitted potential curve is
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Figure 2. The comparison between the present potential (this Letter) (Red line, a ¼ c ¼ 1:94869912; b ¼ 2:60094136; f ¼ 2:04347269, g ¼ 1:78190656; C4 ¼ 0:709265297;
v ¼ 2:64764358, and Re ¼ 2:042), CCSD/aug-cc-pV5Z (Green line or crossing), 3-parameter potential (Blue line, a ¼ 2:087114; b ¼ 3:54492339, and c ¼ 1:0, Ref. [9]), and the
most accurate data (Dark filled circles, Ref. [31]) for the ground state of HeH+: (a) Repulsive region; (b) Attractive region, and (c) an enlarged part in (b). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 2
Comparison of the vibrational energies for the ground state of HeH+ calculated using the present potential (this Letter) (a ¼ c ¼ 1:94869912; b ¼ 2:60094136; v ¼ 2:04347269,
g ¼ 1:78190656; C4 ¼ 0:709265297; f ¼ 2:64764358, and Re ¼ 2:042). The value in the parenthesis is the relative error (d ¼ jTheory�Accuratej

Accurate ) of the calculation, compared to the
most accurate data [33]. Energies in cm�1

m This Letter Accurate (Ref. [33]) m This Letter Accurate (Ref. [33])

0 0. 0. 6 12553.3559 (1.78%) 12781.3485
1 2868.9228 (1.45%) 2911.0174 7 13563.0243 (1.47%) 13765.8454
2 5422.8349 (1.68%) 5515.2227 8 14250.4013 (1.07%) 14405.1903
3 7666.1656 (1.85%) 7810.8577 9 14607.3517 (0.85%) 14732.6855
4 9601.9423 (1.95%) 9792.9915 10 14722.6704 (0.85%) 14848.9097
5 11231.4052 (1.94%) 11453.4425 11 14748.7441 (0.84%) 14873.3489
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presented in Figure 4, which agrees very well with the accurate data
[36]. As shown in Figure 4a), Tang-Toennies potential [37] is much
harder, and CCSD/daug-cc-pV5Z-33211 calculations [35] is slightly

harder than the accurate data [36]. Overall, the new potential is
greatly improved in accuracy over the three-parameter potential
[9] in all the regions.
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Figure 3. The comparison between the present potential (this Letter) (Red line, a ¼ c=2 ¼ 0:449611907, b ¼ 0:130590627; g ¼ 125:509261; v ¼ 7:29009261;
Re ¼ 4:4628; C4 ¼ 2:09988569� 10�6; C6 ¼ 2008637:94, C7 ¼ 99999986:1, and f ¼ 1) and the experimental data (Dark filled circles, Ref. [34]) for the ground state of
NaCl. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Figure 4. Comparison of the ground-state potential curve of Ar2: The present Letter (this Letter) (Red line, a ¼ 1:5069144; b ¼ 19:2457331; g ¼ 126:019972;
v ¼ 1:28100922; Re ¼ 7:10; C6 ¼ 64:3; C8 ¼ 1623, and C10 ¼ 49060) with CCSD/daug-cc-pV5Z-33211 calculations (Cyan cross, Ref. [35]), experimental data (Dark filled
circles, Ref. [36]), Tang-Toennies potential (Blue line, A ¼ 748:3; b ¼ 2:031; C6 ¼ 64:3; C8 ¼ 1623, and C10 ¼ 49060, Ref.[37]), Rydberg-London potential (Dark line,
a ¼ 1720; b ¼ 2:6920; c ¼ 0:2631; d ¼ 37:943, e ¼ 177588, Ref. [19]), and three-parameter potential (Green line, a ¼ 0:8706; b ¼ 0:403498; c ¼ 0:38, Ref. [9]). (a) Short-R;
(b) Intermediate-R; (c) Large-R. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Cahill and Parsegian [19] have compared Rydberg-London (RL)
potential for the ground-state Ar2 with Lennard-Jones (LJ) potential
[23]. They pointed out that the LJ potential curve matched at the
potential minimum is too deep for R > 8:5 Bohr, and too hard for
R < 5:671 Bohr [19]. Does it matter that LJ fails to fit the Ar-Ar
interaction? Cahill and Parsegian [19] found that the dimension-
less second virial coefficient B2=R3

e of Ar2 calculated by using RL
and LJ potentials at room temperature are �0:499 and �0:899,
which differ from the experimental value of �0.552 [38] by 9.6%
and 63%, respectively. Thus, LJ fitting with only two parameters
is not as accurate as RL fitting [19].

Then, is the accuracy of RL potential important in the liquid
phase where additivity is only approximate? Cahill and Parsegian
[19] have significantly tested whether the lack of complete additiv-
ity in the liquid phase obscures the advantages of the RL potential
over the LJ potential. They calculated the heats of vaporization
DvapH of Ar at the boiling points and atmospheric pressure by using
RL and LJ potentials in Monte Carlo simulation [19]. RL and LJ
potentials gave DvapH ¼ 0:0694;0:0787 eV (per atom), which differ

from the experimental value of 0.0666 eV [38] by 4.2% and 18%,
respectively. Clearly, the errors due to a lack of additivity are of
the order of 4% [19], while the errors due to the defect of the LJ
potential are about 18% [19]. Their analysis has shown that even
in the liquid phase, limited additivity is less of a problem than
the defects of the LJ potential [19]. Thus, they concluded that RL
potential represents weak noncovalent bonds better than LJ poten-
tial [19].

How is the accuracy of our new potential function Eq. (5), com-
pared to RL potential? In the intermediate-R region, as shown in
Figure 4b, RL potential curve except a visible deviation at
10 < R < 12 overlaps well with our potential curve and the accu-
rate data. In the repulsive region shown in Figure 4a, RL curve is
slightly softer than the accurate data and our potential (to be
noted, RL converges to a finite value as R goes to 0). In the large-
R region shown in Figure 4c, RL potential displays a discernible
deviation at R ¼ 12 � 16 Bohr. It shows that our potential function
is more accurate than RL potential (same conclusion drawn for Kr2

reported in Section 4.2.4 of Appendix A). Thus, the relative error
4.2% [19] of the calculated heats of vaporization DvapH of Ar at
the boiling points and atmospheric pressure by using the Ryd-
berg-London potential [19], due to the lack of additivity, can be fur-
ther reduced by using our new potential function Eq. (5).

Further, we calculate the vibrational energies for the ground
state of Ar2 using the new potential function. The results are sum-
marized in Table 4.2.3 of Appendix A and compared with those
obtained by using other potential functions. Our results are in
excellent agreement with experiment [36], and are more accurate
than those obtained by using RL [19], Tang-Toennies [12], and Len-
nard-Jones [23] potentials.

For Mg2, there are several ways to obtain the interaction poten-
tial of its ground-state. First, a Rydberg–Klein–Rees (RKR) potential
[39] has been constructed from the measurement of the rovibra-
tional levels. Second, Vidal and Scheingraber [40] have improved
upon the RKR analysis [39] by applying a variational procedure
based on the inverted perturbation approach (IPA). As shown in
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Figure 5. Comparison of the ground-state potential curve of Mg2: The present
Letter (this Letter) (Red line, a ¼ 1:24946345; b ¼ 2:67596495; g ¼ 29:910735;
v ¼ 1:34122874; Re ¼ 7:354; C6 ¼ 627; C8 ¼ 41500, and C10 ¼ 2757000) with the
RKR data points (Green open circles, Ref. [39]), IPA potential (Dark filled circles,
Ref. [40]), X-representation of the potential energy curves (Blue line, Ref. [41]),
Tang-Toennies potential (Green line, A ¼ 7:3486; b ¼ 1:0475; C6 ¼ 627; C8 ¼ 41500,
and C10 ¼ 2757000, Ref.[42]), and ab initio multi-configuration valence bond (MVB)
calculation (Cyan line, Ref. [43]). (a) Repulsive and (b) Attractive regions. (For
interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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Figure 6. The comparison between the present five-parameter potential (this
Letter) (Blue line, a ¼ 2:19893097; b ¼ 21:3316218; c ¼ 0:279984035;
f ¼ 3:6828207, and q ¼ 0:712005705), full CI calculation (AH 1992) (Cyan triangle,
Ref. [47]), multi-reference double excitation CI calculation (MNB 1987) (Green
cross, Ref. [46]), a James-Coolidge-method based calculation (YSW 1977) (Red open
circles, Ref. [45]), and the most accurate data (Dark filled circles, Ref. [48]) for the
meta-stable diatomic dication, Heþþ2 . The potential-well minimum located at
Rmin ¼ 1:333 Bohr, and the barrier at Rmax ¼ 2:184 Bohr with a height of 0.05677
Hartree. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

144 J.C. Xie et al. / Chemical Physics Letters 605–606 (2014) 137–146



Author's personal copy

Figure 5, there is a slight difference between RKR and IPA data
points in the attractive region. Very recently, Tiemann group [41]
has investigated the A1Pþ

u -X1Pþ
g UV spectrum of Mg2 with high

resolution Fourier-transform spectroscopy, and achieved a very
accurate PEC for the ground-state Mg2, i.e., the X-representation
PEC shown in Figure 5, which overlaps exactly with the IPA data
points. Using Eq. (5) and the dispersion coefficients C6; C8 and
C10 of Ref. [41], we fit the accurate potential data of Ref. [41].
The RMS of this fitting is 0.00534, and the potential parameters
are determined to be a ¼ 1:24946345, b ¼ 2:67596495; g ¼
29:910735, and v ¼ 1:34122874. Figure 5 presents our fitted PEC.
Except a slight deviation in the repulsive region, the fitted PEC
overlaps well with the IPA points. To be noted, Tang-Toennies
potential [42] is getting softer and softer in the repulsive region
(see Figure 5a) as R decreases, and shows a slight deviation from
the IPA points in the attractive region. In comparison with the
other PECs, ab initio multi-configuration valence bond (MVB) cal-
culation [43] shows some deviations from the IPA data points[40]
and X-representation PEC [41], but is close to the RKR points [39].

Finally, it should be mentioned that the potential function Eq.
(5) (or Eq. (6)) is also able to represent accurately the ground-state
potentials of charged vdW diatomic systems. As an example, we
present a case study of HeþLi� in Section 4.6.3 of Appendix A.

3.5. Meta-stable systems

The dication molecule, Heþþ2 , was the first doubly positively-
charged diatomics predicted to be meta-stable by Pauling [44],
and has been serving as a prototype for studies of bonding in dica-
tions [45–49]. Thus, we take it as an example (see Section 5.2 and
5.3 in Appendix A for two hetero-nuclear dications, BeH++ and
AlH++, respectively. All parameters for this case study are summa-
rized in Table A4 of Appendix A). We fit the most accurate data of
Wolniewicz [48], and the RMS for this fitting is 0.00581. Figure 6
reports the fitted potential curve and is compared with the accu-
rate data [48] and several full configuration interaction (CI) [46],
multi-reference double excitation CI [47], and a James-Coolidge-
method based [45] calculations. We found that Eq. (7) fits very well
the accurate data and other calculations. Thus, the constructed
pair-potential function Eq. (7) represents accurately the meta-sta-
ble state of Heþþ2 : a potential well with a minimum energy of
0.303744 Hartree located at Rmin ¼ 1:333 Bohr, and a potential bar-
rier of 0.05677 Hartree located at Rmax ¼ 2:184 Bohr. The spacings
of our computed vibrational energies for 4Heþþ2 and 3He4He++ listed
in Table 5.1. of Appendix A have also reached an accuracy of less
than 1%, compared to the most accurate data [48].

4. Conclusions

In conclusion, we have accomplished the goal of this Letter, suc-
cessfully constructing a generalized interatomic pair-potential
function that is able to describe accurately and adequately the
potentials for a range of diatomic systems. Very recently, Marques
et al. [50] have implemented Rydberg-London potential [19] in
their simulation software and demonstrated that Rydberg-London
potential is more reliable than the Lennard-Jones potential [23] to
be used as starting geometries to obtain global minima of atom
clusters. Given that our newly constructed potential has been dem-
onstrated to be more accurate than Rydberg-London potential (see
the detailed comparisons between two potential functions for Ar2,
Kr2, NO, OH, N2, Li2, and H2 presented in Appendix A), it would be
interesting and worthwhile to re-examine the consequences of
these differences in Monte Carlo searches for low-energy states

of atom clusters and bio-molecules [4,50], in numerical simula-
tions [3] of phase transitions and reactions far from equilibrium,
and in other large-scale simulation or modeling [4,5] by using
our interatomic pair-potential function as the two-body term in a
many-body expansion of the interatomic potentials of the system.

We would like to thank Roland E. Allen, Klaus Franzreb, Bo Gao,
Jiangbin Gong, Michael C. Heaven, Paul L. Houston, Paul S. Julienne,
Robert J. Le Roy, Fuli Li, Steve Scheiner, and Eite Tiesinga for helpful
discussions and constructive suggestions.

Appendix A. Supplementary data

Supplementary (In this supporting material, we provide all case
studies that we have demonstrated, and a Nonlinear Least Square
Fortran (Fortran 90) program and input/output files for H2 and
Ar2.) data associated with this article can be found, in the online
version, at http://dx.doi.org/10.1016/j.cplett.2014.05.021.
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