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a b s t r a c t

Based on the molecular-orbital theory for a simplest single-electron diatomic system, we have developed
a unique functional form for pair potentials. We have demonstrated that the diatomic potential thus con-
structed is able to adequately describe a stable as well as meta-stable diatomic system with a good accu-
racy for all relevant internuclear distances.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

The interaction potential is of fundamental importance for
understanding the static and the dynamic properties of gases, liq-
uids and solids. Within the Born–Oppenheimer approximation, the
solution of the Schrödinger equation for a diatomic system leads to
a set of internuclear potentials EðRÞ [1–6; 7, where R is the internu-
clear distance. Clearly, an analytical formula for the potential E (R)
is much easier to deal with than the energy values corresponding
to a series of values of R, such as are provided by ab initio or quan-
tum Monte Carlo calculations [2,6]. Many applications in fact re-
quire such an analytical form, in which one or more parameters
are left to be evaluated [1–6; 7]. At present, it seems impossible
to deduce a manageable analytical expression for the function E
(R) from the first principles of the theory (even modern mathemat-
ical methods are of little help), and one has to turn to empirical ap-
proaches to looking for analytical potential function forms with
fitting parameters [1,2,5,6]. Although numerous attempts to ana-
lytically model diatomic potentials have been made [1–8], these
analytical potentials are usually applied to describing either
strongly or weakly bound, neutral or singly-charged bound diato-
mics, and often lose their validity for small, intermediate, or rela-
tively large internuclear distances [2,5–7]. Thus, great effort has
been devoted to the construction of hybrid potentials, which use
different functions for different R-regions [5,6,9].

For practical applications, it is necessary to build analytical
potential functions E (R) [2,10,11], which satisfy the three basic
criteria [2,10] and are able to adequately describe short-, intermedi-

ate-, and large-R regions [2]. As well as these, a desirable
characteristics [2,10] is that analytical formula E (R) be flexible en-
ough to describe a unique function having a local maximum as well
as a local or global minimum. To achieve these criteria and character-
istics defined for a favorite pair potential, we have developed a
five-parameter pair potential function for diatomic systems. We
demonstrate that this new potential form satisfies the required crite-
ria and characteristics and is able to represent the pair–potential
curves of stable or meta-stable diatomic systems. As an example,
we have successfully applied it to describe strongly bound molecules
Hþ2 , H2, and LiH, weakly bound van der Waals molecule He2, and
meta-stable diatomic dication BeH++. The vibrational energies of
H2, LiH and He2 calculated by using this new model potential reach
a good accuracy for all relevant ranges of the internuclear distances.

2. Five-parameter model potential

2.1. Analytical potential functional form

To build a model potential, the choice of the functional form is of
great importance. Based on the molecular orbital theory for the
ground-state Hþ2 , we have recently found an analytical functional
form that is able to model the diatomic potentials [10]. To see how
we introduce parameters into the analytical function, we briefly
present the analytical functional form here. The associated Hamilto-
nian for simplest single-electron diatomic system Hþ2 is given by [12]

H ¼ �1
2
52 � 1

rA
� 1

rB
þ 1

R
; ð1Þ

where atomic units are used and rA (rB) denotes the distance be-
tween the single electron and nucleus A (B). By considering a s-type
trial function of Hþ2 , the energy of the bonding orbital can be exactly
written as (in atomic units) [12]
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EðRÞ ¼ E1 þ
J1ðRÞ þ K1ðRÞ

1þ S0ðRÞ
; ð2Þ

where E1 ¼ � 1
2 is the total energy of the system at the infinite inter-

nuclear distance R ¼ 1, and J1ðRÞ, K1ðRÞ and S0ðRÞ are defined by
[12]

J1ðRÞ ¼ h/A
0 j �

1
rB
þ 1

R

� �
j/A

0i ¼ e�2R 1þ 1
R

� �
; ð3Þ

K1ðRÞ ¼ h/A
0 j �

1
rA
þ 1

R

� �
j/B

0i ¼ e�R 1
R
� 2

3
R

� �
; ð4Þ

S0ðRÞ ¼ h/A
0 j/

B
0i ¼ e�R 1þ Rþ 1

3
R2

� �
; ð5Þ

known as the Coulomb, exchange, and overlap integrals (note:
j/0i ¼ e�r=

ffiffiffiffi
p
p

, the 1s-orbital of H atom), respectively.
The resultant analytical curve of this function Eq. (2) is pre-

sented in Figure. 1(a). It reads an energy minimum
Emin ¼ �0:56483 Hartree at an equilibrium internuclear distance
Re ¼ 1:323 Å, and satisfies the necessary criteria and characteristics
for building a good diatomic potential [10]. In comparison with
accurate data [13,14], this analytical potential–energy curve Eq.
(2) for the ground-state Hþ2 should be quantitatively improved over
all the internuclear distances R. In the following, two theoretical
approaches are presented to see how the quantitative improve-
ment of the potential curve is achieved.

One well-known approach is based on ab initio method [5,6].
For this one-electron system Hþ2 , the self-interaction-free Har-
tree–Fock method is exact (apart from small basis set errors)
[15]. That is, the potential energy curve for the ground-state Hþ2
should approach the exact solution in the limit of infinite basis
set size [15]. Thus, if one increases the basis set size (for example,
including polarization and even diffuse functions in the trial func-
tion), then the potential curve of the ground-state Hþ2 should be
improved significantly in all the regions of R. In Figure 1a, we dem-
onstrate the effect of basis set size by using Hartree–Fock (HF)
method implemented in the GAUSSIAN 09 electronic structure pack-
age [16]. It is seen that the numerical potential curve for the
ground-state Hþ2 is greatly improved and approaching to the most
accurate data [13,14] as the basis size is increased from GAUSSIAN-
type basis set 3-21G (2 sets of GAUSSIAN functions in the valence re-
gion), to 6-31G (d,p) (including polarization p and d functions), and
then to 6-311+G (3df,2pd) (including 2p and 1d polarization func-
tions and diffuse functions) [16].

Another well-known theoretical approach is the polarization
approximation. Under this approximation, Tang and Toennies
[17–19] have developed a systematic and successful procedure to
take account of exchange energies for calculating the interatomic
potentials of the ground-state Hþ2 . For this single electron system,
the plane in the middle of the two protons divides the space into
two parts, and the exchange energy can be interpreted as a result
from the electron hopping back and forth across this plane. The
‘‘exchange’’ therefore refers to the exchange of two protons. If the
first-order exchange energy �ð1Þexch is used, the energy of the
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Figure 1. The potential energy curve of the ground-state Hþ2 . (a) Analytical function Eq. (2) (blue line), HF/3–21G (black line), HF/6–31G (d,p) (green line), HF/6–311++G
(3df,2pd) (red line), and the 2nd-order polarization approximation (green triangle, Ref. [18]). (b,c) Analytical function Eq. (2) (blue), three-Parameter model potential (black,
a ¼ 1:0511106;b ¼ 0:91703424; c ¼ 2:25, Ref. [10]), five-Parameter model potential (red, this Letter, a ¼ 0:95;b ¼ 0:669; c ¼ 0:965;n ¼ 6:0, and f ¼ 0:11), and HF/6–311++G
(3df,2pd) (dark green). The filled dots are the most accurate data [13,14]. The equilibrium distance Re and minimum energy Emin in the three- and five-prameter model
potentials are fitted to 1.0574 Å and �0.60263 Hartree, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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ground-state Hþ2 for the first-order polarization approximation can
be written in the following form in atomic units [10]

EðRÞ ¼ EpolarðRÞ � ½1� S0ðRÞ��ð1ÞexchðRÞ; ð6Þ

where EpolarðRÞ ¼ E1 þ J1ðRÞ and �ð1ÞexchðRÞ ¼ ½S0ðRÞJ1ðRÞ � K1ðRÞ�=
½1� S2

0ðRÞ�. In fact, it can be shown that Eq. (6) is equivalent to the
analytical equation Eq. (2). Moreover, for the Nth-order polarization
approximation, the energy of the ground-state Hþ2 can be written as
EðRÞ ¼ EpolarðRÞ � ð1�

PN�1
n¼0 SnðRÞÞ�exchðRÞ, where EpolarðRÞ ¼ E1þPN

n¼1�nðRÞ (�nðRÞ is the polarization energy series) and SnðRÞ is the
n-th order overlap integral. Details for this part are presented in
the Appendix B of the supporting material of Ref. [10]. As shown
in Figure 1a and Table 1, the energy of the ground-state Hþ2 under
the polarization approximation is getting closer to the exact values
as the perturbation order N is increased.

2.2. Five-parameter model potential

Motivated by the ab initio calculations with polarization and
diffuse functions included and by the polarization approximation
approach with the increase of the perturbation order N, we have
recently constructed a simple three-parameter model potential
(in atomic units) [10] for diatomic systems based on the analytical
function Eq. (2), i.e.

EðR;a;b; cÞ ¼ E1 þ
J1ðR; cÞ þ K1ðR;a;bÞ

1þ S0ðRÞ
ð7Þ

with

J1ðR; cÞ ¼ e�2cR 1þ 1
R

� �
; ð8Þ

K1ðR;a; bÞ ¼ e�aR 1
R
� bR

� �
; ð9Þ

and S0ðRÞ is given in Eq. (5). As shown in Tables 1 and Figure. 1(b),
the three-parameter model potential [10] for the ground-state Hþ2
agrees well with the most accurate data [13,14] for a set of param-
eters (a ¼ 1:0511106;b ¼ 0:91703424; c ¼ 2:25) [10]. This shows
that the three parameters a;b and c can be properly adjusted so that
contributions of both the polarization and exchanging energies can
be accounted for in an much efficient way, thereby achieving in ef-
fect the same goal as that of using a larger basis set (e.g., 6–311++G
(3df,2pd)) in the trial wave function of Hþ2 [10].

Overall, this three-parameter model potential [10] has been
shown to be a favorite representation of the potential curves of dia-
tomic systems by a unique ‘‘approximate’’ potential curve [11]. It
has been successfully and extensively applied to describe over
200 stable or meta-stable diatomic systems [10] (including weakly
bound van der Waals diatomic complexes, for example, CdNe, NaAr,
and CaHe, and meta-stable diatomic dications, for example, BeH++,
AlH++) over a significantly wide range of internuclear distances (To
be noted, the mentioned 200 cases are presented in Figs. A and B,
and Tables 1–8 of the supporting material of Ref. [10]). Neverthe-
less, the overall accuracy of this three-parameter potential needs

to be further improved, in particular in the large-R portion as shown
in Figure 1c of the potential for the ground-state Hþ2 .

On the other hand, as demonstrated above, polarization and dif-
fusion functions play an important role in a good description of the
diatomic potential. Thus, the nth-order overlap integral SnðRÞ (see
Appendix B in the supporting material of Ref. [10]) should be taken
into account in the construction of a model potential function. In
general, more parameters introduced in a potential function imply
greater flexibility and the great possibility of a closer representa-
tion of a true potential function of E (R). In this sense, the three-
parameter model potential [10] is further improved by introducing
two more parameters, i.e., f and n into the function K (R;a; b), and
the parameter a into the overlap-integral function S0ðRÞ. Thus, we
have constructed a five-parameter potential form in atomic units

EðR;a; b; c; f;nÞ ¼ E1 þ
J1ðR; cÞ þ K1ðR;a;b; f;nÞ

1þ S0ðR;aÞ
ð10Þ

with

K1ðR;a;b; f;nÞ ¼ e�aR f

Rn � bR
� �

; ð11Þ

S0ðR;aÞ ¼ e�aR 1þ Rþ 1
3

R2
� �

; ð12Þ

and J1ðR; cÞ is the same as Eq. (8). When a ¼ c ¼ f ¼ n ¼ 1 and
b ¼ 2=3, Eq. (10) turns to Eq. (2). In the large-R limit, where the
atomic electron clouds do not overlap considerably, the interaction
energy of an atomic pair is given by the well-known multipolar dis-
persion expansion. In this limit, the three-parameter model poten-
tial [10] approaches E1 exponentially, a feature different from the
one suggested by the multipolar dispersion expansion. Thus, in
the exchange integral KðR;a;bÞ, we introduce two new parameters
f and n to the 1/R term. That is, the 1/R term is replaced by f=Rn to
account for the effect of polarization and diffusion functions. To ac-
count for the effect of the sum

PN�1
n¼0 SnðRÞ of the N-order overlap

integral SnðRÞ, we introduce the same parameter a in
K1ðR;a;b; f;gÞ to the exponent term in S0ðRÞ.

As shown in Tables 1 and Figure 1(b) and (c), the five-parameter
model potential for the ground-state Hþ2 agrees well with the most
accurate data [13,14] for a set of parameters
(a ¼ 0:95; b ¼ 0:669; c ¼ 0:965;n ¼ 6:0, and f ¼ 0:11). To be noted,
Re and dissociation energy De ¼ E1 � Emin (the minimum energy
Emin ¼ EðR ¼ ReÞÞ are fitted to the most accurate data: [13]
1.0574 Å and 0.10263 Hartree, respectively. We find that the
five-parameter model potential performs much better in the
large-R region than the three-parameter model potential [10]
and has almost the same quality as the ab initio HF/6–311++G
(3df,2pd) calculation.

3. Application

Based on the polarization approximation, the ground-state
potentials EðEpolar; �exchÞ of H2 [4] (details are also given in section
I (2) in Appendix B of Ref. [10]) and other multi-electron diatomic

Table 1
The potential energies E (R) (in units of Hartree) derived by using polarization approximation approach, three-parameter model potential
(a ¼ 1:0511106; b ¼ 0:91703424; c ¼ 2:25) [10], and five-parameter model potential (this Letter, a ¼ 0:95, b ¼ 0:669, c ¼ 0:965, n ¼ 6:0, and f ¼ 0:11) for Hþ2 at the nuclear–
nuclear distance R = 1.0, 2.0, and 4.0 Bohr. Perturbation results are adapted from Ref. [17], accurate results are from Ref. [13], and the relative errors between theoretical and
accurate results are given in the parenthesis.

R N = 1 [17] N = 2 [17] N = 3 [17] 3-Parameter [10] this work Accurate [13]

1.0 �0.2884 (36.17%) �0.4406 (2.48%) �0.4403 (2.55%) -0.4724 (4.36%) �0.4610 (2.04%) �0.4518
2.0 �0.5538 (8.10%) �0.5876 (2.49%) �0.5994 (0.53%) -0.60263(0.01%) �0.6021 (0.08%) �0.6026
4.0 �0.5369 (1.68%) �0.5427 (0.62%) �0.5445 (0.29%) -0.5429 (0.59%) �0.5482 (0.38%) �0.5461
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systems [19] (details are also given in Sections I (3) and I (4) in
Appendix B of Ref. [10]), when expressed in terms of the polariza-
tion and exchange energies, can take a form similar to Eq. (6) de-
rived for Hþ2 , despite that their origins of the exchange energy are
totally different. Motivated by these known theoretical results,
we have applied extensively the three-parameter model potentials
to about 200 other diatomic systems [10], for which experimental
or ab initio data are available in the literature. All these studied
cases by using the three-parameter model potentials are presented
in Figs. A and B, and Tables 1–8 of the supporting material of Ref.
[10]. For the five-parameter model potential, we select 4 represen-
tative cases, H2, LiH, He2, and BeH++, and report these results in this
communication. In Ref. [10] and this Letter, the dissociation energy
De is fitted exactly to accurate literature data, and the average rel-
ative error and root mean square error for fitting Re to accurate lit-
erature data are 0.02% and 0.017%, respectively.

3.1. How to determine the model potential parameters

Before proceeding with the application, we present here how to
determine the five parameters in the five-parameter model poten-
tial. The procedures are given below:

1. Step 1: Follow one of the three approaches, which are presented
in Appendix C in the supporting material of Ref. [10], to deter-
mine the parameters a; b and c in the three-parameter model
potential Eq. (7). We have determined the three parameters
(a; b; c) of 211 diatomic systems and listed the determined val-
ues in Table 1 in the supporting material of Ref. [10]. In nearly

200 cases, we follow Approach 1 (see Appendix C in the sup-
porting material of Ref. [10]). The case studies for weakly
bounded diatomic systems such as He2, NaAr, CdNe, SrHe, CaHe,
BaHe, LiHe use Approach 2 [10]). We have not tried Approach 3
in the case study.

2. Step 2: Set the a value determined above into Eq. (12) (i.e.,
S0ðR;aÞ in the five-parameter potential Eq. (10)) and let f ¼ 1
and n ¼ 1. At this point, the equilibrium point (Emin;ReÞ of the
potential curve may be away from the accurate one (note: this
curve is not very far away from the determined three-parame-
ter potential curve).

3. Step 3: Turn to tune the parameters f and n and pull the equilib-
rium point (Emin;ReÞ back to the accurate one.Step 4: Further tune
all five parameters to get better agreement between the five-
parameter potential curve and the available RKR (Rees–Klein–
Rydberg [2]) points or ab initio potential–energy curves. At this
step, it may need some trial-and-error steps and experience to
quickly find the fitting parameters (As shown in this Letter, the
determined values of the three parameters (a; b; c) in the five-
parameter potentials for the studied cases Hþ2 , H2, LiH, He2 and
BeH++ are not far from those determined by using the three-
parameter model potential). A totally objective or even black-
box approach is however not available yet (NOTE: user may use
Nonlinear Least Square Program to determine the parameters).

For convenience, we briefly present here Approach 1 mentioned
above. For diatomic systems for which experimental or ab initio
data are already available, we obtain the three parameters of a;b,
and c in the three-parameter model potential Eq. (7) as follows:
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Figure 2. The comparison between five-parameter model potential (Red line, this Letter, a ¼ 1:519;b ¼ 2:0478; c ¼ 1:785;n ¼ 0:795, and f ¼ 1:005 ), three-parameter model
potential (Black line, a ¼ 1:5065756, b ¼ 2:48475652; c ¼ 1:45, Ref. [10]), hybrid Rydberg–London potential (Green line, Ref. [9]), CCSD/6–311++G (3df,2pd)(Blue line, Ref.
[10]), CCSD/aug-cc-pV5Z (Cyan line), and the most accurate data (filled circles, Ref. [21]) for the ground-state H2. (a) Short-R region R ¼ 0:05 � 0:25 Å; (b) Intermediate-R
region R ¼ 0:25 � 2:5 Å; (c) Large-R region R ¼ 2:5 � 4Å. The equilibrium distance Re and minimum energy Emin in the three- and five-parameter model potentials are fitted to
0.7412 Å and �1.1744746 Hartree, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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1. First, the dissociation energy De ¼ E1 � Emin (Emin: the minimum
energy at Re) from experiments or other approaches, such as ab
initio methods, imposes a constraint as two adjusting parame-
ters, for example, a and c, are scanned.

2. Then, the known value of Re is used to obtain a second con-
straint condition, i.e., dE

dR ðR ¼ ReÞ ¼ 0. This gives the third param-
eter b. There might be many possible sets of a; b, and c that
meet the two constraints associated with De and Re. Based on
the two steps, we have provided a Fortran program in the sup-
porting materials of Ref. [10] to obtain roughly the three param-
eters a; b and c (Readers may contact us directly for the Fortran
code).

3. Finally, we further tune the parameters until good agreement
between the three-parameter potential curve and the available
RKR [2] or Dunham [2] or ab initio results is reached. In this
paper, we have listed the determined values of three parame-
ters (a; b; c) in the three-parameter model potential Eq. (7) for
the studied cases Hþ2 , H2, LiH, He2 and BeH++.

The last step is subjective in the sense that different standards for
the agreement (between the model potential curve and the known
results) will give slightly different results. Establishing a common
objective standard for all the molecules studied is virtually impos-
sible. In some cases, e.g., for meta-stable diatomic systems, defining
a quantitative criteria for good agreement is even less useful be-
cause the overall agreement in the shape of the potentials is more
important than the agreement at a few internuclear distances. In
addition, we found a simple rule that may be useful for determining
the parameters as a and c are tuned on a finer and finer scale: (1) if
c is fixed at some value and the value of a increases (decreases),
then the equilibrium distance is seen to decrease (increase); and
(2) if a is fixed at some value, then varying the value of c changes
the width and depth of potential well.

3.2. The simplest multi-electron molecule H2

The hydrogen molecule has been one of the most favorite sys-
tems used for testing quantum theory and for testing other theo-
retical methods or calculations. For this two-electron system, the
exchange can be interpreted as a result of an exchange of the two
electrons. The potential energy function for its ground state is also
given by Eq. (6) [19]. This shows that both Hþ2 and H2 bonding can
be understood in a similar fashion, despite that the origin of the ex-
change energy is totally different. That also explains why both Hþ2
and H2 have been important prototypes for theoreticians to acquire
a physical understanding of the nature of chemical bonding. There-
fore, we first study H2, the simplest multi-electron system.

In Figure 2, we compare the five-parameter model potential
(a ¼ 1:519; b ¼ 2:0478; c ¼ 1:785;n ¼ 0:795, and f ¼ 1:005 ) with
3-parameter model potential (a ¼ 1:5065756, b ¼ 2:48475652;
c ¼ 1:45) [10], hybrid Rydberg–London potential [9], advanced ab
initio CCSD [20] (couple cluster method with single and double
excitation) calculation, and the most accurate literature data [21]
for the ground-state H2. For advanced ab initio CCSD calculations,
we use two basis sets [16]: 6–311++G (3df,2pd) and aug-cc-pV5Z
(Augmented correlation-consistent core-valence basis sets up to
septuple-zeta quality). In the large-R region (see Figure 2c), we
found that the five-parameter model potential performs much bet-
ter than the 3-parameter model, and is close to the hybrid Ryd-
berg–London potential. In the short-R region (see Figure 2), the
five- and three-parameter model potentials are close to the accu-
rate data and CCSD/6–311++G (3df,2pd) calculations, and are much
better than the hybrid Rydberg–London potential. In the interme-
diate-R region (Figure 2b), all model potentials have quite similar
performance, agreeing well with the accurate data. To be noted,

CCSD calculation is improved greatly in the large-R region as a lar-
ger basis set aug-cc-pV5Z is used.

The vibrational energies for the ground-state H2 calculated by
using the three- and five-parameter model potentials are summa-
rized in Tables 2 and compared with experiment. In total, we have
obtained 15 vibrational levels as observed in experiment [22]. It is
found that the calculated vibrational energies by using the five-
parameter model potential reach a relative error of about 5% for
13 vibrational levels (m ¼ 0 � 12) in comparison with experiment
[22], and are significantly improved in the large-R region of the
diatomic potential in comparison with the vibrational energies
[10] obtained by using the three-parameter model potential.

3.3. The smallest neutral heteropolar molecule LiH

Lithium hydride has been the object of intense theoretical and
spectroscopic studies since LiH represents the smallest neutral het-
eropolar molecule. Its simple electronic structure makes the mole-
cule one of the favorite subjects for testing different quantum-
chemical techniques. In this Letter, we also take the lithium hy-
dride LiH as the second example.

In Figure 3a and b, we compare the five-parameter potential
(a ¼ 0:871; b ¼ 1:9650; c ¼ 0:294;n ¼ 0:265, and f ¼ 1:188 ) with
the three-parameter potential (a ¼ 0:8885591, b ¼ 1:51479003;
c ¼ 0:345) [10], ab initio CCSD/6–311++G (3df,3pd) calculation,
and the most accurate RKR experimental data [23] for the ground
state LiH. In the large-R region, as shown in Figure 3b, we find that
the five-parameter model performs better than the three-parame-
ter model, and even better than CCSD/6–311++G (3df,2pd) calcula-
tion. Table 3 summarizes the calculated vibrational energies for
two isotopes 7LiH and 7LiD by using the five- and three-parameter
model potentials. In comparison with RKR experimental data [23],
we find that the accuracies of the computed vibrational energies
for both 7LiH and 7LiD by using the five-parameter model reach a
good accuracy over the whole range of the internuclear distances.
In the large-R region, the calculated vibrational energies are signif-
icantly improved in the five-parameter model than in the three-
parameter model.

3.4. Weakly bound diatomic molecules

Weakly bound diatomic molecules are of great interest to both
theoreticians and experimentalists. Such weak interactions are the

Table 2
The calculated vibrational energies for the ground state H2 using 3-parameter model
(a ¼ 1:5065756; b ¼ 2:48475652; c ¼ 1:45) [10], and 5-parameter (this work,
a ¼ 1:519; b ¼ 2:0478, c ¼ 1:785;n ¼ 0:795, and f ¼ 1:005) potentials. The value in
the parenthesis is the relative error of the present calculation from experiment [22].
Dissociation energy De ¼ 4:74763 eV.

m Exp. 3-Parameter model This Letter
[eV] [eV] [eV]

0 �4.4774 �4.4628 (0.33%) �4.4849 (0.17%)
1 �3.9615 �3.9218 (1.00%) �3.9500 (0.29%)
2 �3.4747 �3.4166 (1.67%) �3.4457 (0.83%)
3 �3.0166 �2.9465 (2.32%) �2.9724 (1.46%)
4 �2.5866 �2.5111 (2.92%) �2.5307 (2.16%)
5 �2.1847 �2.1099 (3.42%) �2.1211 (2.91%)
6 �1.8110 �1.7427 (3.77%) �1.7442 (3.69%)
7 �1.4661 �1.4093 (3.87%) �1.4008 (4.46%)
8 �1.1508 �1.1097 (3.57%) �1.0916 (5.14%)
9 �0.8665 �0.8439 (2.61%) �0.8178 (5.62%)
10 �0.6153 �0.6123 (0.49%) �0.5804 (5.68%)
11 �0.4000 �0.4155 (3.88%) �0.3806 (4.84%)
12 �0.2245 �0.2543 (13.27%) �0.2203 (1.89%)
13 �0.0945 �0.1301 (37.67%) �0.1013 (7.16%)
14 �0.0174 �0.0452 (159.77%) �0.0264 (51.78%)
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ultimate test for both theoretical methods and basis sets. The pair
potentials themselves can be used by theoreticians to model sys-
tems using molecular dynamics and by spectroscopists to aid in
the analysis of spectra. Here, we take He2 as the third example.

In Figure 4, we present the five-parameter model potential
curve for the ground state He2, and compare it with CCSD/6–
311++G (3df,2pd) calculation, three-parameter model potential
(a ¼ 1:313; b ¼ 0:04200863; c ¼ 1:40) [10], and accurate data
[24]. We find that the five-parameter potential curve agrees well
with the accurate data [24], and is improved significantly in the
large-R region in comparison with the three-parameter model po-
tential. To be noted, advanced ab initio CCSD/6–311++G (3df,3pd)
calculation performs well in the large-R region, but is not doing

well in the short-R and intermediate-R regions in comparison with
the literature data and the three- and five-parameter model poten-
tials. Certainly, in comparison with accurate data [24], this poten-
tial–energy curve calculated by using CCSD/6–311++G (3df,2pd)
can be quantitatively improved over all the internuclear distances
by increasing the size of basis sets, for example, aug-cc-pV5Z as
shown in Figure 4.

Then, we have performed vibrational energy calculations for
4He2 using the five-parameter model potential. As observed in
experiment, we got one single vibrational level with the vibrational
energy of �0.104218 meV, which reaches a relative error of 4% in
comparison with the measured value �0.099929 meV [25], is im-
proved over 2% in comparison with the vibration energy
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Figure 3. The comparison between five-parameter model potential (red, this work, a ¼ 0:871;b ¼ 1:9650; c ¼ 0:294;n ¼ 0:265, and f ¼ 1:188 ), three-parameter model
potential (blue, a ¼ 0:8885591, b ¼ 1:51479003; c ¼ 0:345, Ref. [10]), CCSD/6–311++G (3df,2pd)(black, Ref. [10]), and the RKR experimental data (filled circles, Ref. [23]) for
the ground state LiH: (a) full scale and (b) large-R region. The potential energy UðRÞ ¼ EðRÞ � E1 . The equilibrium distance Re and minimum energy Umin in the three- and five-
prameter model potentials are fitted to 1.5950 Å and �0.092435 Hartree, respectively.

Table 3
The calculated vibrational energies for isotopes 7LiH and 7LiD using the three-parameter model potential (a ¼ 0:8885591, b ¼ 1:51479003; c ¼ 0:345) [10] and five-parameter
model potential (this work, a ¼ 0:871, b ¼ 1:9650; c ¼ 0:294;n ¼ 0:265, and f ¼ 1:188). The value in the parenthesis is the relative error of the numerical calculation from
experiment [23]. Dissociation energy De ¼ 2:515 eV.

7LiH 7LiD

3-Parameter 5-Parameter Exp. 3-Parameter 5-Parameter Exp.
m [eV] [eV] [eV] [eV] [eV] [eV]

0 �2.4283 (0.02%) �2.4092 (0.81%) �2.4287 �2.4502 (0.03%) �2.4303 (0.84%) �2.4509
1 �2.2594 (0.03%) �2.2425 (0.78%) �2.2601 �2.3222 (0.05%) �2.3044 (0.81%) �2.3233
2 �2.0949 (0.11%) �2.0805 (0.79%) �2.0971 �2.1976 (0.06%) �2.1811 (0.72%) �2.1989
3 �1.9355 (0.21%) �1.9232 (0.84%) �1.9395 �2.0751 (0.12%) �2.0603 (0.83%) �2.0775
4 �1.7812 (0.34%) �1.7706 (0.94%) �1.7873 �1.9555 (0.19%) �1.9423 (0.87%) �1.9593
5 �1.6321 (0.50%) �1.6229 (1.06%) �1.6403 �1.8387 (0.29%) �1.8269 (0.93%) �1.8440
6 �1.4884 (0.67%) �1.4801 (1.23%) �1.4985 �1.7249 (0.40%) �1.7142 (1.02%) �1.7318
7 �1.3502 (0.85%) �1.3424 (1.42%) �1.3618 �1.6140 (0.52%) �1.6043 (1.12%) �1.6224
8 �1.2175 (1.03%) �1.2099 (1.64%) �1.2302 �1.5062 (0.65%) �1.4972 (1.24%) �1.5160
9 �1.0906 (1.17%) �1.0829 (1.87%) �1.1035 �1.4014 (0.79%) �1.3929 (1.39%) �1.4125
10 �0.9696 (1.26%) �0.9612 (2.12%) �0.9820 �1.2998 (0.91%) �1.2916 (1.54%) �1.3117
11 �0.8545 (1.27%) �0.8451 (2.34%) �0.8655 �1.2013 (1.04%) �1.1932 (1.71%) �1.2139
12 �0.7456 (1.13%) �0.7349 (2.53%) �0.7541 �1.1061 (1.14%) �1.0978 (1.89%) �1.1189
13 �0.6431 (0.77%) �0.6308 (2.67%) �0.6481 �1.0141 (1.24%) �1.0055 (2.08%) �1.0268
14 �0.5471 (0.07%) �0.5328 (2.69%) �0.5475 �0.9255 (1.27%) �0.9163 (2.25%) �0.9374
15 �0.4577 (1.10%) �0.4412 (2.54%) �0.4527 �0.8403 (1.25%) �0.8304 (2.41%) �0.8509
16 �0.3753 (3.05%) �0.3563 (2.16%) �0.3642 �0.7586 (0.80%) �0.7477 (2.23%) �0.7647
17 �0.3001 (6.27%) �0.2785 (1.38%) �0.2824 �0.6805 (0.92%) �0.6684 (2.68%) �0.6868
18 �0.2322 (11.47%) �0.2081 (0.11%) �0.2083 �0.6060 (0.54%) �0.5925 (2.76%) �0.6093
19 �0.1721 (20.43%) �0.1455 (1.84%) �0.1429 �0.5352 (0.06%) �0.5202 (2.76%) �0.5349
20 �0.1200 (37.14%) �0.0915 (4.53%) �0.0875 �0.4682 (0.95%) �0.4515 (2.66%) �0.4638
21 �0.0764 (73.64%) �0.0467 (6.16%) �0.0440 �0.4051 (2.25%) �0.3866 (2.43%) �0.3962
22 �0.3459 (4.09%) �0.3255 (2.04%) �0.3323
23 �0.2908 (6.79%) �0.2685 (1.38%) �0.2723
24 �0.2400 (10.75%) �0.2157 (0.44%) �0.2167
25 �0.1934 (16.58%) �0.1673 (0.87%) �0.1659
26 �0.1513 (25.56%) �0.1236 (2.56%) �0.1205
27 �0.1138 (40.32%) �0.0848 (4.50%) �0.0811
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�0.106599 meV calculated by using the three-parameter model
potential [10], and is much better than the value �0.107 meV ob-
tained in Ref. [24] and �0.114 meV in Ref. [4].

3.5. Diatomic dications

Diatomic dications [26] can form temporarily stable species in
the gas phase even though strong Coulomb repulsion exceeds con-
ventional bond energies. A large number of XH++ dications com-
posed of first- or second-row atoms have been characterized
both theoretically and experimentally [26–32]. Such species are
usually thermodynamically unstable with respect to dissociation
into two mono-cations, but significant kinetic stability may result
if sufficiently high barriers impede fragmentation. Barriers on the
potential curves usually exist due to avoided crossings between
states correlating diabatically with asymptotes of repulsive (X+ +
H+) and attractive (H + X++) character. The accurate calculation of
such barriers is very important for determining the lifetimes of
these diatomic dications. To date, only few theoretical models
[33] were specifically designed for meta-stable molecular dications
[26].

As well as neutral and singly-charged diatomic systems [10]
that we have extensively studied, we have found that more signif-
icantly, both the three- and five-parameter model potentials are
applicable to describe the meta-stable diatomic dications. For the
meta-stable dications Heþþ2 , Beþþ2 , BeH++ and Mgþþ2 , we have found
that both three- and five-parameter model potentials can support
5, 18, 8 and 20 vibrational levels, respectively, which agree well
with previous theoretical and experimental studies [27–29]. We
also found that eight and twelve vibrational levels are observed
for using the three- and five-parameter model potentials con-
structed for meta-stable dication BeH++ and AlH++, respectively.
The estimated lifetimes [10] for the lowest four vibrational states
of BeH++ and those for the lowest six vibrational states of AlH++

are supported well by experiment [30,31]. All the dication cases
that we have studied by using the three-parameter model poten-
tials are presented in Figs. A27–A30, A55–56, A59–60, and A92–
94 of the supporting material of Ref. [10].

In Figure5, we present the five-parameter potential curve for
the meta-stable diatomic dication BeH++ (a ¼ 0:7028,

b ¼ 1:3655; c ¼ 0:1158;n ¼ 2:05, and f ¼ 2:395), which is com-
pared with CCSD/6–311++G (3df,3pd) calculation [10], three-
parameter potential (a ¼ 0:687; b ¼ 1:43632004, c ¼ 0:1185) [10],
and accurate data [28,29]. It is found that the potential barrier gen-
erated by the five-parameter potential agrees well with the accu-
rate data [27] except a slight difference around R = 4 Å, and is
much more accurate than the barrier generated by the three-
parameter model potential. To be noted, CCSD/6–311++G (3df,2pd)
has a slight difference from the five-parameter potential model at
the local minimum and local maximum. Overall, both CCSD/6–
311++G (3df,2pd) and five-parameter potential model have quite
similar performance.

3.6. Limitation and perspective

The term J1ðR; cÞ (i.e., Eq. (8)) in both three- and five-parameter
model potentials has included only one parameter c. In principle,
one can choose multiple parameters. But as supported by this Let-
ter and our results for more than 200 diatomic systems [10] by
using three-parameter model potential, one parameter c has al-
ready done a good job, reproducing the perturbation treatment
to the polarization energy.

Based on extensive literature study, we found a number of
established results about the electronic structures of diatomic sys-
tems with closed-shell and/or S-type valence constituents (atoms
or ions). These diatomic systems could be good case studies of
our three- and five-parameter model potentials due to the impor-
tant facts: (1) the atomic densities are (approximately) spherically
symmetric [34]; (2) only the outer regions of the atoms, in which
the atomic densities overlap, contribute significantly to the inter-
action, while the region around the nuclei in which the atomic
density is rapidly varying do not contribute much to the interac-
tion energy [34]; (3) approximately, the exchange interactions be-
tween two neutral multi-electron atoms may be dominated by the
exchange of a single pair of electrons at any time [19,35], and the
resulting exchange energy of a multi-electron system is equal to
the exchange energy of a single pair multiplied by a rather compli-
cated angular momentum coupling constant (see Eq. (164) in Ref.
[19]); (4) the asymptotic exchange energy for multi-electron dia-
tomic ions may be due to the outer-most electron hopping be-
tween the two ionic cores, and the trial wave function can be the
asymptotic wave function of the singled-out electrons [36]; (5)
for a homonuclear diatomic molecule, Smirnov and Chibisov [37]
found that its exchange energy is proportional to an exponent term
expð�2

ffiffiffiffiffiffiffiffiffiffi
2EI;A

p
RÞ (EI;A is the ionization energy at nuclear A. See Eq.

(157) in Ref. [19]). For a heteronuclear diatomic molecule, the
amplitude of the wavefunction and the ionization energies EI;A

and EI;B for the two atoms are different. Then, the exchange energy
of a single pair of electrons is proportional to an exponent term
exp½�ð

ffiffiffiffiffiffiffiffiffiffi
2EI;A

p
þ

ffiffiffiffiffiffiffiffiffiffi
2EI;B

p
ÞR� (see Eq. (160) in Ref. [19]), which is valid

only for EI;A � EI;B. However, even for interactions such as LiHe
where the difference between EI;Li and EI;He is a factor of 2, the for-
mula still works (the true range of validity of the formula is still an
interesting problem) [38]; and (6) between closed-shell atoms or
ions, the re-arrangement of electron density is quite small [34].
Using the three-parameter model potential, we have carried out
extensive studies of more than 200 diatomic systems (see the sup-
porting material in Ref. [10]) with closed-shell and/or S-type con-
stituents (atoms or ions whose shells are closed or whose valence
shells are S-orbital), for which experimental or ab initio data are
available. The potential curves thus determined for these diatomic
systems agree with the available experimental or theoretical data,
with the agreement in many cases much better than one could na-
ively anticipate from a three-parameter potential. Moreover, we
have demonstrated that the potential–energy curves of these
weakly or strongly bound diatomic systems can be represented
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Figure 4. The comparison between five-parameter model potential (red line, this
Letter, a ¼ 1:185;b ¼ 0:01391; c ¼ 1:75;n ¼ 1:92, and f ¼ 1:408 ), three-parameter
model potential (black line, a ¼ 1:313, b ¼ 0:04200863; c ¼ 1:40, Ref. [10]), CCSD/
6–311++G (3df,2pd)(blue line), CCSD/aug-cc-pV5Z (green line) and the most
accurate data (filled dots, Ref. [24]) for the weakly bound diatomics He2. The
potential energy UðRÞ ¼ EðRÞ � E1 . The equilibrium distance Re and minimum
energy Umin in the three- and five-prameter model potentials are fitted to 2.9737
Å and �34.0 lHartree, respectively. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)
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by an ’’approximate’’ universal reduced potential function [11]
supporting above-mentioned facts. We anticipate that our model
potential provides a useful guide towards supplementing the po-
tential curves obtained from the RKR and Dunham methods [2].
Extensions of the present approach to other types of diatomic sys-
tems are ongoing.

Molecular-modeling or simulation softwares use pair potentials
chosen more for speed than for accuracy [9]. For example, they use
the harmonic potential for covalently bounded pairs of neutral
atoms [9] and the Lennard–Jones (LJ) potential [39] to describe
the isotropic interactions in van der Waals molecules. As might
be expected, the LJ potential is most successful in describing long-
and short-range interactions where one of its two terms domi-
nates, but is not sufficiently flexible to duplicate experimental re-
sults in the region of the potential well [40]. An example of this
inflexibility is evident from extensive studies by differential scat-
tering cross sections of rare-gas atoms. For these species the LJ po-
tential approximates the repulsive wall quite well, but has a
minimum that is too shallow and a long-range attraction that is
too strong [40]. The Rydberg–London potential [9] is much more
accurate than the harmonic potential and LJ potential, but as
shown in Figure. 2(a), is much soft in the short-range interaction.
In this Letter, the proposed five-parameter model potential is
applicable for short-, intermediate-R and large-R regions (far be-
yond the equilibrium position), and is quite significantly improved
in the large- and short-R regions in comparison with three-param-
eter model potential and Rydberg-London potential, respectively.
When many-body effects are small, the five-parameter model po-
tential might be useful in large-scale computer simulation, which
has become an extremely useful tool for studying structure,
dynamics, mechanism, and function of complex systems, from
biology to materials science and energy technology. Surely, the
asymptotic exponential behavior will present an issue for some ex-
treme cases such as ultracold collisions for which one may con-
sider the construction of hybrid potentials of this new potential
and van der Waals potentials [5,6].

4. Conclusion

In summary, we have constructed a five-parameter pair poten-
tial function for diatomic systems. The new functional form satis-
fies the three basic criteria [2] for a good pair potential, is able to
adequately describe short-, intermediate-, and large-R interaction
regions, and is much flexible to represent a unique potential func-
tion having a local maximum as well as a local/global minimum.

We have demonstrated it in stable and meta-stable diatomic sys-
tems (such as strongly bound molecules Hþ2 , H2, and LiH, weakly
bound diatomics He2, and meta-stable diatomic dication BeH++).
The vibrational energies of H2, LiH and He2 calculated by using
the five-parameter model potential reach a good accuracy for all
relevant internuclear distances.

JCX would like to thank Professor Jiangbin Gong for providing
the Fortran program for computing the vibrational energies of
the studied diatomic systems.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.cplett.2013.
11.004.
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Figure 5. (a) The comparison between five-parameter model potential (Red line, this Letter, a ¼ 0:7028; b ¼ 1:3655; c ¼ 0:1158;n ¼ 2:05, and f ¼ 2:395 ), three-parameter
model potential (Black line, a ¼ 0:687, b ¼ 1:43632004; c ¼ 0:1185, Ref. [10]), CCSD/6–311++G (3df,3pd)(Green open circle, Ref. [10]), and the most accurate data (Black filled
circle Ref. [27]) for the meta-stable diatomic dication BeH++. (b) The barrier shown clearly near R = 3.5 Å. The potential energy UðRÞ ¼ EðRÞ � E1. The equilibrium distance Re

and minimum energy Umin of the local minimum in the three- and five-parameter model potentials are fitted to 1.8015 Å and 0.1052199 Hartree, respectively. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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