Supporting Materials

Improved Pair-Potential Function for Diatomic Systems

Jianing Colin Xie¹, Tapas Kar¹, Sudhanshu K. Mishra², and Rui-Hua Xie³

¹Department of Chemistry and Biochemistry, Utah State University, Logan, UT 84322, USA ²Department of Economics, North-Eastern Hill University, Shillong 793022, India ³Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China

List of Contents

1.	Alkaline-Earth Diatomic Systems
	Fig.S1(a): Mg ₂
	Fig.S1(b): Sr ₂
	Fig.S1(c): Ba ₂
2.	Rare-Gas Diatomic Systems:
	Fig.S2(a): Ar ₂
	Fig.S2(b): Kr ₂
3.	Alkali-Helium Diatomic Systems
	Fig.S3: NaHe
	Fig.S4: KHe
	Fig.S5: RbHe
	Fig.S6: CsHe
4.	Group 12 Diatomic Systems
	Fig.S7(a): Zn_2
	Fig.S7(b): Cd ₂
5.	Reduced Potential Energy Curves: $U(R_s) = V(R)/De$ and $R_s = (R - R_e)/R_e$ Scheme
	Fig.S8(a): H ₂ , LiHe, NaHe, KHe, RbHe, CsHe, He ₂ , Ar ₂ , Kr ₂ $\dots \dots \dots \dots \dots \dots 9$
	Fig.S8(b): Mg_2 , Ca_2 , Sr_2 , Ba_2 10
	Fig.S8(c): Hg ₂ , Zn ₂ , Cd ₂ $\dots 10$
6.	Reduced Potential Energy Curves: $U(R_s) = V(R)/De$ and $R^* = (R - R_e)/L_2$ Scheme
	Fig.S9: H_2 and He_2
	Fig.S10: Ar ₂ and He ₂ 11
	Fig.S11: Kr_2 and He_2
	Fig.S12: LiHe and He ₂ \dots 12

Fig.S13: NaHe and He ₂ \dots	
Fig.S14: KHe and He_2	
Fig.S15: RbHe and He ₂ \dots	
Fig.S16: CsHe and He ₂ \dots	
Fig.S17: Mg_2 and He_2	
Fig.S18: Ca_2 and He_2	14
Fig.S19: Sr_2 and He_2	
Fig.S20: Ba_2 and He_2	
Fig.S21: Hg_2 and He_2	
Fig.S22: Cd_2 and He_2	
Fig.S23: Zn_2 and He_2	
7. How to Determine Potential Parameters of Eq.(5)	
8. References	

1 Alkaline-Earth Diatomic Systems

Fig.S1(a) The comparison between the new model potential (red line, this work, $\alpha = 1.05795181$, $\beta = 3.67097693$, $\gamma = 0.499242836$, $\eta = 17.4184595$, and $\zeta = 10.7$) and Tang-Toennies (TT2010)) potential (dark filled circles, Ref. [18]) for the ground-state Mg₂. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 7.354 Bohr and -1.962 mHartree, respectively, of Ref. [18].

Fig.S1(b) The comparison between the new model potential (red line, this work, $\alpha = 0.785467116$, $\beta = 3.10926315$, $\gamma = 0.399101564$, $\eta = 26.5914016$, and $\zeta = 16.0$) and Tang-Toennies (TT2010)) potential (dark filled circles, Ref. [19]) for the ground-state **Sr**₂. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 8.848 Bohr and -4.933mHartree, respectively, of Ref. [19].

Fig.S1(c) The comparison between the new model potential (red line, this work, $\alpha = 0.685979692$, $\beta = 0.960619083$, $\gamma = 0.475823144$, $\eta = 83.3087266$, and $\zeta = 17.0$) and Tang-Toennies (TT2011)) potential (dark filled circles, Ref. [20]) for the ground-state **Ba**₂. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 9.768 Bohr and -5.461*m*Hartree, respectively, of Ref. [20].

2 Rare-Gas Diatomic Systems: Ar₂, Kr₂

Fig.S2(a) The comparison between the new model potential (red line, this work, $\alpha = 1.41971509$, $\beta = 13.4773495$, $\gamma = 0.704291784$, $\eta = 80.9966379$, and $\zeta = 10.2$), three-parameter potential (XG2005) (blue line, $\alpha = 0.8706$, $\beta = 0.403498$, $\gamma = 0.38$, Ref. [23]) and Tang-Toennies (TT2003)) potential (dark filled circles, Ref. [15]) for the ground-state **Ar**₂. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 7.10 Bohr and -0.454mHartree, respectively, of Ref. [15].

Fig.S2(b) The comparison between the new model potential (red line, this work, $\alpha = 1.35607455$, $\beta = 8.7269567$, $\gamma = 0.765828689$, $\eta = 206.380386$, and $\zeta = 10.3$) and Tang-Toennies (TT2003)) potential (dark filled circles, Ref. [15]) for the ground-state **Kr**₂. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 7.58 Bohr and -638 μ Hartree, respectively, of Ref. [15].

3 Alkali-Helium Diatomic Systems

Fig.S3 The comparison between the new model potential (dark circles, this work, $\alpha = 0.6949$, $\beta = 0.00874$, $\gamma = 0.69$, $\eta = 8.1$, and $\zeta = 19.3$), three-parameter potential (XG2005) (blue line, $\alpha = 0.678$, $\beta = 0.00863$, $\gamma = 0.69$, Ref. [23]) and Kleinekathöfer-Tang-Toennies-Yiu (KTTY) potential (red line, Ref. [11]) for the weakly bound **NaHe**. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 12.155 Bohr and -5.91 μ Hartree, respectively, of Ref. [11]. (a) Short-R region (Energy in log scale); (b) Intermediate- and Large-R regions.

Fig.S4 The comparison between the new model potential (dark circles, this work, $\alpha = 0.645$, $\beta = 0.007177$, $\gamma = 0.55$, $\eta = 3.2$, and $\zeta = 19.95$), three-parameter potential (XG2005) (blue line, $\alpha = 0.615$, $\beta = 0.00679$, $\gamma = 0.55$, Ref. [23]) and Kleinekathöfer-Tang-Toennies-Yiu ((KTTY)) potential (red line, Ref. [11]) for the weakly bound **KHe**. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 13.8Bohr and -4.093µHartree, respectively, of Ref. [11]. (a) Short-R region (Energy in log scale); (b) Intermediate- and Large-R regions.

Fig.S5 The comparison between the new model potential (dark circles, this work, $\alpha = 0.6158$, $\beta = 0.00644$, $\gamma = 0.55$, $\eta = 3.01$, and $\zeta = 22.0$), three-parameter potential (XG2005) (blue line, $\alpha = 0.599$, $\beta = 0.00632$, $\gamma = 0.55$, Ref. [23]) and Kleinekathöfer-Tang-Toennies-Yiu ((KTTY)) potential (red line, Ref. [11]) for the weakly bound **RbHe**. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 14.234Bohr and -3.704 μ Hartree, respectively, of Ref. [11]. (a) Short-R region (Energy in log scale); (b) Intermediate- and Large-R regions.

Fig.S6 The comparison between the new model potential (dark circles, this work, $\alpha = 0.5885$, $\beta = 0.005643$, $\gamma = 0.546$, $\eta = 3.25$, and $\zeta = 23.0$), three-parameter potential (XG2005) (blue line, $\alpha = 0.571$, $\beta = 0.00559$, $\gamma = 0.546$, Ref. [23]) and Kleinekathöfer-Tang-Toennies-Yiu ((KTTY)) potential (red line, Ref. [11]) for the weakly bound **CsHe**. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 15.028 Bohr and -3.151 μ Hartree, respectively, of Ref. [11]. (a) Short-R region (Energy in log scale); (b) Intermediate- and Large-R regions.

4 Group 12 Diatomic Systems

Fig.S7(a) The comparison between the new model potential (red line, this work, $\alpha = 1.04950583$, $\beta = 0.89490001$, $\gamma = 0.5675643$, $\eta = 10.5555675$, and $\zeta = 10.6$) and Tang-Toennies (TT2013)) potential (dark filled circles, Ref. [22]) for the ground-state Zn₂. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 7.323 Bohr and -1.10mHartree, respectively, of Ref. [22].

Fig.S7(b) The comparison between the new model potential (red line, this work, $\alpha = 1.02411942$, $\beta = 1.77266453$, $\gamma = 0.526618617$, $\eta = 15.7820342$, and $\zeta = 11.0$) and Tang-Toennies (TT2013)) potential (dark filled circles, Ref. [22]) for the ground-state Cd₂. The potential energy $V(R) = E(R) - E_{\infty}$. The equilibrium distance R_e and minimum energy V_{min} in the new model potentials are fitted to 7.752 Bohr and -1.49mHartree, respectively, of Ref. [22].

5 Reduced Potential Curve: $R_s = (R - R_e)/R_e$ Scheme

Is it possible to find a simple globally accurate function for potential curves away from the vicinity of the equilibrium distance R_e for van der Waals diatomic systems? To answer this question, we test the global universality of the closed form expression Eq.(2) for the systems investigated above. The following figures presents the results based on the scaling scheme with a dimensionless length $Rs = (R - R_e)/R_e$ [27]. Figure 12(a), Fig.12(b), or Fig.12(c) show that both Rare-gas and Alkli-Rare-Gas systems, the Alkaline-Earth systems, or Group 12 systems seem to present a single binding energy relation, respectively. However, All these systems do not support a single binding-energy relation.

Fig.S8(a) Reduced potential curves $U(R_s) = V(R)/D_e$ ($V(R) = E(R) - E_{\infty}$, $D_e = |E_{min} - E_{\infty}|$)for He₂, Ne₂,Ar₂, Kr₂, H₂ (³ \sum state), LiHe, NaHe, KHe,RbHe, and CsHe with $R_s = (R - R_e)/R_e$. All are referenced to He₂. These systems seem to support a single binding energy relation.

Fig.S8(b) Reduced potential curves $U(R_s) = V(R)/D_e$ ($V(R) = E(R) - E_{\infty}$, $D_e = |E_{min} - E_{\infty}|$)for Alkaline-earth systems Mg₂, Ca₂, Sr₂, and Ba₂ with $R_s = (R - R_e)/R_e$. All are referenced to He₂. These Alkaline-earth systems seem to support a single binding energy relation.

Fig.S8(c) Reduced potential curves $U(R_s) = V(R)/D_e$ ($V(R) = E(R) - E_{\infty}$, $D_e = |E_{min} - E_{\infty}|$)for the group 12 systems: Cd₂, Zn₂, and Hg₂ with $R_s = (R - R_e)/R_e$. All are referenced to He₂. These group 12systems seem to support a single binding energy relation.

6 Reduced Potential Curve: $R^* = (R - R_e)/L_2$ Scheme

Using the dimensionless length $R^* = (R - R_e)/L_2$, we find that all the diatomic systems studied in this Note, as shown in Fig.13 to Fig.27, can have a universal reduced potential curve in the well region and long-range region away from the vicinity of the equilibrium distance R_e .

Fig.S9 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, H₂ (³ \sum state), and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.10 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Ar₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S11 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Kr₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S12 Reduced potential curves $U(R^*) = V(R)/D_e (V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, LiHe, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S13 Reduced potential curves $U(R^*) = V(R)/D_e$ ($V(R) = E(R) - E_{\infty}$, $D_e = |E_{min} - E_{\infty}|$) for He₂, NaHe, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S14 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, KHe, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S15 Reduced potential curves $U(R^*) = V(R)/D_e$ ($V(R) = E(R) - E_{\infty}$, $D_e = |E_{min} - E_{\infty}|$) for He₂, RbHe, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S16 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, CsHe, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S17 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Mg₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S18 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Ca₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S19 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Sr₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S20 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Ba₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S21 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Hg₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S22 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Cd₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

Fig.S23 Reduced potential curves $U(R^*) = V(R)/D_e$ $(V(R) = E(R) - E_{\infty}, D_e = |E_{min} - E_{\infty}|)$ for He₂, Zn₂, and Rydberg function $U(R^*) = -(1 + \sqrt{2}R^*)e^{-\sqrt{2}R^*}$ with $R^* = (R - R_e)/L_2$.

7 How to Determine Potential Parameters?

Our purpose in this study is to provide a few-parameter analytical function form to uniformly describe the potential energy of diatomic systems. Here we present an approach to determine the potential parameters.

- Step 1: First, determine the parameters α, β, and γ in Eq.(1) following Approach 1 (a simple Fortran code provided there) introduced in the supporting material of Ref. [23] (e.g., α = 1.313, β = 0.04200863, γ = 1.4 for He₂ [23]);
- Step 2: Find the most accurate coefficients C_6 , C_8 and C_{10} from the literature (e.g., $C_6 = 1.461$, $C_8 = 14.11$, and $C_{10} = 183.5$ for He₂ [5,8]). The higher-order coefficients C_{2n} ($n \ge 6$) can be derived by using the relation [5], $C_{2n} = (C_{2n-2}/C_{2n-4})^3 C_{2n-6}$. In this work, we set n = 7.
- Step 3: Determine the damping parameter ζ by setting $\zeta \approx 1.5R_e$ where R_e is the equilibrium distance ($R_e = 5.621$ Bohr [5,8,15,29] and $\zeta = 9$ for He₂).
- Step 4: Keep the γ value determined in Step 1 unchanged.
- Step 5: Adjust the parameter η in Eq.(2) starting from $\eta = 1$, tune the parameter α to adjust the equilibrium distance R_e , and tune the parameter β to adjust the well depth (for example, $\alpha = 1.41$, $\beta = 0.05056$, $\gamma = 1.4$, $\eta = 62.6$, and $\zeta = 9$ for He₂).

• Step 6: The above steps locate the range of the potential parameters. Then, use the Nonlinear Least-Square Fitting (NLLSF) Fortran program¹ that we provide in the supporting material to finally determine potential parameters α , β , γ , η , and ζ (In the Fortran program, we use He₂ as an example, and thus the input file for He₂ is provided also in the supporting material). To be noted, users may skip above Steps 1,3,4,5 and directly use NLLSF program to fit the potential to determine the potential parameter α , β , γ , η and ζ by setting the parameter range as follows: $\alpha = 0 \sim 5$, $\beta = 0 \sim 100$, $\gamma = 0 \sim 5$, $\eta = 0 \sim 100$, and $\zeta = 0 \sim 100$. In addition, users may use other NLLSF program that is available (For example, Matlab provides several functions for solving NLLSF problems).

The potential parameters determined for diatomic systems reported in this work are listed in Table 1.

References

- [1] Y. P. Varshni, Rev. Mod. Phys. 29, 2052 (1957).
- [2] J. Goodisman, Diatomic Interaction Potential Theory, Vol.1, (Academic Press, New York, 1973).
- [3] G. York, R. Scheps, and A. Gallagher, J. Chem. Phys. 63, 1052 (1975).
- [4] J. S. Winn, Acc. Chem. Res. 14 (1981) 341.
- [5] K. T. Tang and J. P. Toennies, J. Chem. Phys. 80, 3726 (1984).
- [6] P. Huxley, D. B. Knowles, J. N. Murrell, and J. D. Watts, J. Chem. Soc., Faraday Trans. 2, 80 (1984) 1349.
- [7] J.B. Anderson, C. A. Traynor, and B.M. Boghosian, J. Chem. Phys. 99, 345 (1993).
- [8] K. T. Tang, J. P. Toennies, and C. L. Yiu, Phys. Rev. Lett. 74, 1546 (1995).
- [9] T. Korona, H. L. Williams, R. Bukowski, B. Jeziorski, and K. Szalewicz, J. Chem. Phys. 106, 5109 (1997).
- [10] U. Kleinekathöfer, K.T. Tang, J. P. Toennies, and C.L. Yiu, Chem. Phys. Lett. 249, 257 (1996).
- [11] U. Kleinekathöfer, M. Lewerenz, and M. Mladenovic, Phys. Rev. Lett. 83, 4717 (1999).
- [12] U. Kleinekathöfer, Chem. Phys. Lett. 324, 403 (2000).
- [13] J. Koperski, Phys. Rep. 369, 177 (2002).
- [14] D. Bellert and W. H. Breckenridge, Chem. Rev. 102 (2002) 1595.
- [15] K. T. Tang, J. P. Toennies, J. Chem. Phys. 118, 4976 (2003).
- [16] K. Cahill, V. A. Parsegian, J. Chem. Phys. 121 (2004) 10839.

¹To credit one of our authors, S. K. Mishra, who developed this program, cite the following reference: S. K. Mishra, "Performance of Differential Evolution Method in Least Squares Fitting of Some Typical Nonlinear Curves", Journal of Quantitative Economics, 5(1), 140-177 (2007).

- [17] D. D. Yang, P. Li, and K. T. Tang, J. Chem. Phys. 131, 154301 (2009).
- [18] P. Li, W. Xie, and K. T. Tang, J. Chem. Phys. 133, 084308 (2010).
- [19] G. P. Yin, P. Li, and K. T. Tang, J. Chem. Phys. 132, 074303 (2010).
- [20] P. Li, J. Ren, N. Niu, and K. T. Tang, J. Phys. Chem. A 115, 6927 (2011).
- [21] L.W.Qiao, P.Li, K.T.Tang, Chem. Phys. Lett. 532, 19(2012).
- [22] L.M.Wei, P.Li,L.W.Qiao and K.T.Tang, J.Chem.Phys.139, 154306(2013).
- [23] R.H.Xie and J.B. Gong, Phys. Rev. Lett. 95, 263202 (2005).
- [24] K. Patkowski, V. Spirko, and K. Szalewicz, Science 326, 1382 (2009).
- [25] R. Islampour, M. Gharibi, and A. Khavanizadeh, J. Struct. Chem. 52, 664 (2011).
- [26] H. Knöckel, S. Rühmann, and E. Tiemann, J. Chem. Phys. 138 (2013) 094303.
- [27] R.H.Xie and P.S. Hsu, Phys. Rev. Lett. 96, 243201 (2006).
- [28] J.C. Xie, T. Kar, R.H. Xie, Chem. Phys. Lett. 591 (2014) 69.
- [29] R. Feltgen, H. Kirst, K. A. Köhler, H. Pauly, and F. Torello, J. Chem. Phys. 76, 2360 (1982).
- [30] J.N. Murrell, S. Carter, S.C. Farantos, P. Huxley, A.J.C. Varandas, Molecular Potential Energy Functions, John Wiley & Sons, New York, 1984.
- [31] A. F. Wagner, G. Das, and A. C. Wahl, J. Chem. Phys. 60, 1885 (1974).
- [32] D.D. Konowalow and D.S. Zakheim, J. Chem. Phys. 57, 4375 (1972).
- [33] R. A. Aziz, V. P. S. Nain, J. S. Carley, W. L. Taylor, and O. T. McConville, J. Chern. Phys. 70, 4330 (1979).
- [34] B. Liu and A. D. McLean, J. Chem. Phys. 91, 2348 (1989)
- [35] R. A. Aziz and M. J. Slaman, J. Chem. Phys. 94, 8047 (1991).
- [36] W. Kolos and L. Wolniewicz, J. Chem. Phys. 43, 2429 (1965).
- [37] K. T. Tang, J. Peter Toennies, and C. L. Yiu, Theor.Chim. Acta. 88, 169 (1994).
- [38] O. Allard, A. Pashov, H. Knöckel, and E. Tiemann, Phys. Rev. A 66, 042503 (2002).
- [39] O. Allard, C. Samuelis, A. Pashov, H. Knöckel, and E. Tiemann, Eur. Phys. J. D 26, 155 (2003).
- [40] N. Tariq, N. A. Taisan, V. Singh, and J. D. Weinstein, Phys. Rev. Lett. 110, 153201 (2013).
- [41] A. Banerjea and J.R. Smith, Phys. Rev. B 37, 6632 (1988).