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a b s t r a c t

A three-parameter pair-potential model recently constructed is improved in the short- and long-range
interaction regions. We demonstrate that this improved potential function is able to accurately describe
the entire potentials of the ground-state van der Waals systems such as rare-gas, triplet H2, Alkali-
helium, Alkaline-earth, and group 12 diatomic systems. All these systems show a single binding-energy
relation in the attractive region. The improved function suggests a unique form for describing the poten-
tials of diatomic systems ranging from strongly-bound to weakly-bound diatomic systems.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The interatomic potential is of fundamental importance for
understanding the microscopic and thermodynamical properties
of gases, liquids, and solids [1–25]. For practical applications
[2,13,23] involving molecular dynamics simulation, prediction of
cluster structures, atom–atom collisions, chemical reactivity,
transport properties for more complex systems, and molecular
spectroscopy, an analytical pair-potential form, in which few or
more parameters are left to be evaluated (or fitted), could be very
helpful and is required. Over the past 90 years, all kinds of analyt-
ical pair-potential function forms, either empirically or semi-
empirically, have been reported (see review [1,2,6,13,14,25] and
recent works [16,23,24,26]).

A good pair-potential function, EðRÞ where R is the internuclear
distance, is defined that it is able to adequately describe the
relevant interaction regions [1–25] as well as to satisfy the basic
criteria [1,2]:

� (i) Its asymptotic value EðR!1Þ for R!1 is finite;
� (ii) A global potential minimum Emin at the equilibrium distance

Re is allowed;
� (iii) It approaches infinity as R! 0.

For general applications [2,13], it is also expected that the pair-po-
tential function may show a desirable characteristics [1,2] that the

analytical formula is flexible enough to describe a unique function
which has a maximum as well as a minimum. One of us has recently
developed such a pair-potential function, i.e., a three-parameter
model potential for diatomic systems (all equations and variables
throughout this Letter are in atomic units) [23]

EðR;a; b; cÞ ¼ E1 þ
J1ðR; cÞ þ K1ðR;a;bÞ

1þ S0ðRÞ
ð1Þ

with

J1ðR; cÞ ¼ e�2cR 1
R
þ 1

� �
; ð2Þ

K1ðR;a;bÞ ¼ e�aR 1
R
� bR

� �
; ð3Þ

S0ðRÞ ¼ e�R 1þ Rþ R2

3

 !
; ð4Þ

known as the Coulomb, exchange, and overlap integrals, respec-
tively, where a;b; c are the adjusting parameters, and E1 is the total
energy of the system at the internuclear distance R!1. This simple
model potential satisfies the basic criteria (i), (ii), (iii) and the desir-
able characteristics addressed above, and is able to represent the po-
tential curves of diatomic systems with closed-shell and/or S-type
valence-shell constituents by a unique ‘‘approximate’’ reduced po-
tential curve [27]. So far, this model potential has been successfully
applied to describe more than 200 stable or meta-stable diatomic
systems [23] over a significantly wide range of internuclear dis-
tances. Examples include strongly bound molecules (e.g., Hþ2 , H2,
and LiH), weakly bound van der Waals diatomic complexes (e.g.,
He2, LiHe, Ca2, Hg2, CdNe, and NaAr), and meta-stable diatomic dica-
tions (e.g., BeH++, AlH++, and MgH++) [23]. This three-parameter
model potential plays a significant role on uniquely describing
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strongly or weakly bound systems, or meta-stable systems. Very re-
cently, Xie et al.[28] have introduced 2 more parameters into Eq. (1)
to improve the accuracy of this three-parameter model potential.
Nevertheless, the overall accuracies in the repulsive and attractive
regions of this model potential, as shown in Figure 1a and b for
the ground-state He2 in comparison with experiment [29], need to
be further improved. It forms the purpose of this Letter.

2. New model potential

In the short-range (valence) region of the interaction, there is no
difference between neutral and ion interaction [30]. At large separa-
tion of the fragments, however, there are important differences in
the functional forms of the potential [2,4–6,14,24,30]. Neutral
closed-shell fragments have a van der Waals interaction energy
which is asymptotic to the multipolar dispersion expansion
[2,5,30] with the dispersion terms as [5]: �

P1
n¼3C2n=R2n. Accurate

values of C6; C8, and C10 are available in the literature, and the high-
er-order coefficients C2n (n P 6) can be derived by C2n ¼ ðC2n�2=

C2n�4Þ3C2n�6 [5,8,15]. Two ions interacts with an energy C1=R [30];
an ion and a neutral (non-polar) closed shell fragment with
�C4=R4 [30], etc. Under the large-R limit, the three-parameter
model potential Eq. (1) [23] approaches E1 exponentially, a feature
different from the mentioned forms.

If the asymptotic multipolar expansion is added to a near-Har-
tree–Fock potential, the resulting potential is quite accurate in the
van der Waals attractive region [31]. Tang, Toennies, and their
teams have shown that the addition of a Born–Mayer repulsive po-
tential to the above-mentioned dispersion terms is able to give a
good description of rare-gas [5,8], alkali-helium [10,11], alkaline-
earth-helium [12], alkaline-earth dimers [17–20], and group 12 di-
mers [22] potentials. A similar scheme with Morse potentials has
been successfully used to derive rare-gas potentials from bulk
properties [32]. The pair-potential proposed by Korona et al. [9]
is also a good representation of the potentials of all homo- and het-
ero-nuclear dimers of He, Ne, Ar and Kr. Very recently, with the
asymptotic multipolar expansion added to the constructed poten-
tial, Patkowski, Spirko, and Szalewicz [24] have reproduced the ob-
served spectra of the ground-state Beryllium dimer. Several other
promising models with the inclusion of the asymptotic expansion

were reviewed in a recent work [25]. In the light of these successes,
we examine in this Letter a modified form of the three-parameter
potential Eq. (1) by adding the asymptotic terms, i.e.,

EðR;a;b; c;g; fÞ ¼ E1 þ
J1ðR; c;gÞ þ K1ðR;a;bÞ

1þ S0ðRÞ

� FðR=ReÞ 1� e�ðR=fÞ
5

� �X1
n

Cn

Rn ð5Þ

with

J1ðR; c;gÞ ¼ e�2cR 1
R
þ g

� �
; ð6Þ

where FðR=ReÞ is a sign function defined as: (i) FðR=ReÞ ¼ þ1 for
R=Re P 10�3 and (ii) FðR=ReÞ ¼ �1 for R=Re < 10�3. The number n
in the third term of Eq. (5) is defined by specifically studied cases,
for example, n ¼ 6;8;10; . . .for neutral closed-shell atoms. The
asymptotic �Cn=Rn term has an improper behavior in that it goes
to �1 as R approaches to 0. This is due to the asymptotic nature
of the dispersion expansion, which is only valid for the internuclear
distances where charge distributions do not overlap. To eliminate
the unrealistic behavior, a damping term [3], 1� exp½�ðR=fÞ5� with
a damping parameter f and a sign function FðR=ReÞ, is put in the
sum of the Cn=Rn terms. To account for the accuracies in the repul-
sive wall, a new parameter g, as shown in Eq. (6), is introduced into
the Coulomb integral Eq. (2), i.e., J1ðR; c;gÞ shown in Eq. (6).

3. Applications

Another purpose in this Letter is trying to provide a few-param-
eter analytical function form to uniformly describe the potential
energy of diatomic systems. The potential parameters a; b, c;g,
and f can be determined by using the Nonlinear Least-Squares Fit-
ting Fortran program (see Appendix A) developed by one of us. The
most accurate coefficients C6, C8 and C10 for the systems are avail-
able from the literature. Table 1 list the potential parameters and
multipolar dispersion coefficients of the diatomic systems studied
in this Letter. Here we only report the results of He2, H2, Ca2, Hg2

and LiHe. All the other cases are summarized in the supporting
material (see Appendix A).
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Figure 1. The comparison between the new model potential (red line, this work, a ¼ 1:41; b ¼ 0:05056; c ¼ 1:4;g ¼ 62:6, and f ¼ 9), three-parameter potential
(XG2005) (dark line, a ¼ 1:313;b ¼ 0:04200863; c ¼ 1:4, Ref.[23]), five-parameter potential (Xie et al. 2014) (green line, a ¼ 1:185;b ¼ 0:01391; c ¼ 1:75;n ¼ 1:92, and
f ¼ 1:408, Ref.[28]), Tang-Toennies potential (TT1984)(blue line, A ¼ 41:96; b ¼ 2:523, Ref.[5,15]), quantum Monte Carlo calculation (ATB1993)(red star, Ref. [7]), LM2M2
potential (AS1991) (cyan triangle, Ref. [35]), variational LM2 (LM1989) (blue cross, Ref.[34]), Tang-Toennies-Yiu potential (TTY1995) (green open circle,
D ¼ 7:449; b ¼ 1:3443, Ref. [8]), and experimental data (dark filled circles, Ref. [29]) for the weakly bound helium dimer. The potential energy VðRÞ ¼ EðRÞ � E1. The
equilibrium distance Re and minimum energy Vmin in new model potentials are fitted to 5.621 Bohr and �34.0 lHartree, respectively, of Ref. [5,15]. (a) Repulsive region
(Energy in log scale); (b) Attractive region. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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3.1. Rare-gas systems

The interatomic potentials between members of the rare gas
family of atoms provide the largest class of chemically identical
atoms which interact via van der Waals potentials [15]. He2 is
probably the atom–atom system which has been studied most
extensively theoretically as well as experimentally. Two very accu-
rate refined potentials based on the combined evaluation of both
bulk and molecular beam scattering data were proposed by Aziz
and co-workers [33] and Feltgen and co-workers [29]. Having only
four electrons in closed shells, He2 is ideally suited for a theoretical
study. Here we apply the new model to describe the ground state
of He2 (the results for Ar2 and Kr2 are reported in the supporting
material, see Appendix A). The results are reported in Figure 1
and compared with literature data. Details are summarized in
Table 2. We find that the new potential curve in the short- and
large-R regions has been greatly improved in comparison with

the three-parameter potential curve (XG2005) [23] and the re-
cently constructed five-parameter potential curve [28]. In the
whole interaction regions, the new potential curve is in good
agreement with experiment [29] and perturbation calculations of
Tang-Toennies-Yiu (TTY1995) [8], variational LM-2 (LM1989)
[34], and LM2-M2(AS1991) [35] potentials, and quantum Monte
Carlo (ATB1993) [7]. To be noted, for R < 4:5 Bohr, Tang-Toennies
potential (TT1984) [5] is slightly harder than the others.

3.2. H2 triplet state

This is the only system for which an exact ab initio potential [36]
is available within the Born–Oppenheimer approximation. In Fig-
ure 2, we report the new potential curve for the triplet state
(3P

u) of H2. It is compared with the exact ab initio results of Kolos
and Wolniewicz [36,37], Tang-Toennies potential (TT1984) [5],
Tang-Toennies-Yiu perturbation calculation (TTY1994) [37], and

Table 1
Potential Parameters a; b; c;g and f, the minimum energies Vmin ¼ Emin � E1 (in units of lHartree), the equilibrium distance Re , and the dimensionless length L2 determined for
van der Waals diatomic systems. Multipolar dispersion coefficients C6;C8 and C10 for LiHe [11], NaHe [11], KHe [11], RbHe [11], CsHe [11], He2 [5], Ar2 [15], Kr2 [15], H2 (triplet)
[5], Ca2 [17], Mg2 [18], Sr2 [19], Ba2 [20], Hg2 [21], Cd2 [22], and Zn2 [22] are listed. All in atomic units, and Nmax ¼ 5.

System a b c g f C6 C8 C10 Vmin Re L2

H2(3P
u) 1.046 0.02618 0.874 5.8 11.58 6.499 124.4 3286 �20.4547 7.796 1.3574456

He2 1.40826 0.050783 1.39 60.5 9.0 1.461 14.11 183.5 �34.134 5.628 0.9852352
Ar2 1.41971509 13.4773495 0.704291784 80.9966379 10.2 64.30 1623.0 49060 �454.281 7.124 1.1456531
Kr2 1.35607455 8.7269567 0.765828689 206.380386 10.3 129.6 4187.0 155500.0 �643.25 7.583 1.1867907
LiHe 0.721 0.01011 0.64 4.33 19.0 22.507 1083.2 72602.1 �7.0385 11.723 1.8812927
NaHe 0.6949 0.00874 0.69 8.1 19.3 23.768 1307.6 94563.2 �5.9492 12.171 1.9976355
KHe 0.645 0.007177 0.55 3.2 19.95 34.038 2525.2 237538 �4.0831 13.794 2.1917189
RbHe 0.6158 0.00644 0.55 3.01 22.0 36.289 2979.0 300406 �3.7076 14.285 2.2614580
CsHe 0.5885 0.005643 0.546 3.25 23.0 41.417 3903.4 453443 �3.1432 15.044 2.3915291
Mg2 1.05795181 3.67097693 0.499242836 17.4184595 10.7 627 41500 2757000 �1968 7.326 1.8321816
Ca2 0.78884 3.1899 0.369987 15.8 15.15 2121 223000 21320000 �50102 8.119 1.9118386
Sr2 0.785467116 3.10926315 0.399101564 26.5914016 16.0 3103 379200 42150000 �4929 8.828 1.9348461
Ba2 0.685979692 0.960619083 0.475823144 83.3087266 17.0 5160 772000 101400000 �5453.35 9.776 1.9743901
Zn2 1.04950583 0.89490001 0.56756431 10.5555675 10.6 359 13500 640000 -1105.5 7.298 1.6983069
Cd2 1.02411942 1.77266453 0.526618617 15.7820342 11.0 686 28900 1537000 -1494.0 7.722 1.7874285
Hg2 0.983398619 3.86501339 0.436746668 12.0345448 10.0 392.0 12920.0 537000 �1788.4 6.956 1.5889788

Table 2
Comparison of He2 potential energies VðRÞ ¼ EðRÞ � E1 (in units of lHartree): New model potential (this work, a ¼ 1:40826; b ¼ 0:050783; c ¼ 1:39;g ¼ 60:5, and f ¼ 9),
three-parameter potential (XG2005) (a ¼ 1:313; b ¼ 0:04200863; c ¼ 1:4, Ref.[23]), Tang-Toennies potential (TT1984)(Ref.[5,15]), quantum Monte Carlo calculation
(ATB1993)(Ref. [7]), LM2M2 potential (AS1991) (Ref. [35]), variational LM2 (LM1989) (Ref.[34]), Tang-Toennies-Yiu potential (TTY1995) (Ref. [8]), and experimental data (Ref.
[29]). The value in the parenthesis is the relative error, Error% ¼ jTheory� Experimentj � 100=Experiment, compared to experiment. R in atomic units.

R TT1984 TTY1995 LM1989 AS1991 ATB1993 XG2005 This work Experiment
Ref. [5,15] Ref. [8] Ref.[34] Ref.[35] Ref.[7] Ref.[23] Ref.[29]

3.0 14489 (23.78) 11860 (1.32) 11930 (1.92) 12010 (2.61) 12070 (3.12) 3215 12615 (7.77) 11705
3.212 8425 (19.78) 7201 (2.37) – – – 2112 7312 (3.95) 7034
3.401 5155 (16.42) 4553 (2.82) – – – 1437 4473 (1.02) 4428
3.5 3971 3561 3520 3531 – 1169 3448 –
3.591 3115 (13.23) 2829 (2.84) – – – 963 2708 (1.82) 2751
3.780 1861 (10.64) 1730 (2.85) – – – 633 1625 (3.39) 1682
4.0 996 947.5 928.3 927.7 375 877 –
4.157 622 (6.33) 600 (2.74) – – – 249 551 (5.65) 584
4.5 194 191.4 185.2 190.0 83 175 –
4.6 129 (2.32) 128 (0.81) 124 (2.34) 123.4 (2.81) – 54 117 (7.85) 126.97
5.0 �0.105 �0.0408 �1.06 �0.1225 �1.3�2.6 �11.99 �1.12 –
5.1 �13.34 (4.79) �13.39 (5.18) �14.03 (10.29) �14.16 (11.23) – �19.90 �13.58 (6.68) �12.73
5.2 �22.39 (3.95) �22.55 (4.69) �22.91 (6.36) �23.03 (6.92) – �25.60 �22.21 (3.11) �21.54
5.6 �34.32 (0.94) �34.77 (2.26) �34.65 (1.91) �34.74 (2.18) �34.87 (2.56) �33.99 �34.10 (0.29) �34.00
6.0 �30.32 (0.166) �30.75 (1.59) �30.54 (0.89) �30.63 (1.19) – �30.85 �30.48 (0.69) �30.27
6.6 �20.05 �20.28 – �20.14 �19.8 �21.03 �20.25 –
7.5 �9.71 (0.00) �9.763 (0.55) �9.68 (0.31) �9.689 (0.22) �9.66 (0.51) �9.47 �9.60 (1.13) �9.71
9.0 �3.14 (0.32) �3.138 (0.26) �3.12(0.32) �3.128 (0.01) �3.04 (2.88) �1.96 �3.06 (2.24) �3.13
9.5 �2.24 (0.43) �2.237 (0.31) – – – �1.12 �2.22 (0.45) �2.23
10.0 �1.62 (0.00) �1.624 (0.25) �1.62 (0.00) – – �0.63 �1.64 (1.23) �1.62
12.0 �0.53 (1.92) �0.5255 (1.06) �0.52 (0.00) �0.5251 (0.98) – �0.06 �0.542 (4.23) �0.52
15.0 �0.1341 �0.1341 – �0.1341 �0.12 �0.0016 �0.1346 –
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the three-parameter model potential (XG2005) [23]. The new po-
tential curve is in good agreement with the exact ab initio results
and TTY1994 perturbation calculation. The differences between
the new potential energies and exact potential energies in the well
region are smaller than 2%, while those at the repulsive region are
less than 10%. At R < 6 Bohr, we found that the TT1984 potential
[5] is much harder than the exact curve, TTY1994 perturbation cal-
culation, and the new potential curve, and its difference from ab ini-
tio point is more than 10% and increases greatly when R decreases.
Compared to the three-parameter model potential [23], the new

potential curve is greatly improved in the short-R range and in
the large-R region.

3.3. Alkaline-earth diatomic systems

The interaction potentials of alkaline-earth dimers have been
the subject of many investigations. They are excimer species and
are therefore of interest in laser applications. In recent years,
investigations in these systems intensified mainly because of cold
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Figure 2. The comparison between the new model potential (red line, this work, a ¼ 1:046; b ¼ 0:02618; c ¼ 0:874;g ¼ 5:8, and f ¼ 11:58), three-parameter potential
(XG2005) (dark line, a ¼ 0:978; b ¼ 0:02228; c ¼ 0:874), Tang-Toennies-Yiu perturbation calculation (TTY1994)(dark cross, Ref.[37]), Tang-Toennies potential (TT1984) (blue
line, A ¼ 9:30; b ¼ 1:664, Ref. [5]), and exact data (green filled circles, Ref. [37,36]) for the triplet H2(3P

u) state. The potential energy VðRÞ ¼ EðRÞ � E1 . The equilibrium
distance Re and minimum energy Vmin in the new model potentials are fitted to 7.80 Bohr and �20.5 lHartree, respectively, of Ref. [5]. (a) Repulsive region (Energy in log
scale); (b) Attractive region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Vmin in the new model potentials are fitted to 8.081 Bohr and �5.021 lHartree,
respectively, of Ref. [17]. (For interpretation of the references to color in this figure
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Table 3
Comparison of the calcium dimer potential between the experiment of Allard et al.
[38,39], the Tang-Toennies model (TT-2009) [17], and the new model potential. The
value in the parenthesis is the relative error, Error% ¼ jTheory� Experimentj � 100=
Experiment, compared to experiment. All energies are in units of cm�1 and R in units
of Å.

R TT-2009 (Error %) This work (Error %) Experiment

3.463960 795.3 (22.94) 712.1 (31.01) 1032.1575

3.555705 248.3 (33.46) 203.0 (45.59) 373.1825
3.647450 �169.6 (73.84) �191.5 (96.30) �97.557
3.739195 �499.1 (13.26) �491.7 (11.59) �440.6477
3.830940 �724.7 (4.81) �714.7 (3.37) �691.4483
3.922685 �884.6 (1.91) �875.0 (0.80) �868.0599
4.106174 �1061. (0.33) �1053.6 (0.36) �1057.5163
4.197920 �1094. (0.06) �1090.5 (0.26) �1093.3715
4.289664 �1102. (0.01) �1102.2 (0.03) �1101.884
4.381409 �1090. (0.01) �1094.4 (0.40) �1090.1029
4.500000 �1056. (0.24) �1063.2 (0.92) �1053.4653
4.761905 �930.4 (0.44) �943.97 (1.90) �926.3289
5.023859 �785.3 (0.73) �797.93 (2.34) �779.6277
5.285714 �642.5 (0.29) �654.41 (2.14) �640.6405
5.547619 �519. (0.01) �526.48 (1.42) �519.073
5.809524 �413. (0.98) �418.57 (0.35) �417.1011
6.071429 �328.3 (1.55) �330.59 (0.86) �333.4624
6.333333 �259. (2.56) �260.42 (2.03) �265.8181
6.595238 �205.2 (3.02) �205.24 (2.99) �211.5934
6.726191 �182.3 (3.43) �182.39 (3.37) �188.7677
6.988095 �144.1 (4.12) �144.49 (3.85) �150.2882
7.250000 �114.8 (4.21) �115.08 (3.96) �119.8441
7.500000 �92.67 (4.28) �93.17 (3.75) �96.8103
8.000000 �61.15 (4.05) �62.20 (2.39) �63.7338
8.717949 �34.68 (3.67) �36.21 (0.57) �36.0021
9.435897 �20.5 (3.13) �21.78 (2.93) �21.1638
10.30342 �11.47 (2.47) �12.15 (3.32) �11.761
11.61111 �5.263 (2.04) �5.41 (0.74) �5.373
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atom physics. Among them, Mg2 is the first van der Waals
molecule for which the electronic ground state potential was con-
structed from spectroscopic measurements. As such, it became a
benchmark system. In the supporting materials, we report the re-
sults for Mg2, Sr2 and Ba2 (see Appendix A). Here we only present
the results of Ca2.

The ground state potential energy curve of Ca2 calculated from
Eq. (5) is shown in Figure 3. To compare with Tang-Toennies po-
tential (TT2009) [17] and experiment [38,39], some numerical data
are listed in Table 3. The shape of the present potential is in good
agreement with the experimentally determined potential [38,39].
As seen in Table 2, in the entire attractive part of the potential,
the largest difference between the present model and the experi-
ment is only 3.96% at 7.25 Å. Both TT2009 potential [17] and the
new potential model have almost identical potential shape except
small differences at 4.5 to 5.5 Å and 3.4 to 3.7 Å as shown in
Table 3. The new potential curve in the repulsive and large-R re-
gions has been greatly improved in comparison with the three-
parameter potential (XG2005) curve [23].

3.4. Group 12 diatomic systems

The group 12 dimers (Zn2, Cd2, Hg2) have been investigated for a
long time. These dimers are of interest for a variety of reasons as
listed in the report of Koperski [13]. Experimentally, Hg2 potential
is probably the most extensively studied among these three di-
mers. Because much higher temperature is required to vaporize
cadmium and zinc, Cd2 and Zn2 are less extensively studied than
Hg2. The progress in theoretical calculations is so rapid that accu-
rate potential energy curves calculated with advanced ab initio
methods are available.

The ground state Hg2 potential predicted by the Tang-Toennies
model (TT2012) is possibly the most accurate to date [21]. The
excellent results for the entire potential curves [22] obtained for
the ground states of Cd2 and Zn2 demonstrate again the ability of
the Tang-Toennies potential model to mimic the van der Waals
potentials in cases where the bonding is not purely dispersive.
Thus, in Figure 4, we compare the new potentials for the ground
states of Hg2 (those for Cd2 and Zn2 are presented in the supporting
material) with the TT2012 [22]. It reaches an excellent agreement
between the new potential curve and TT2012. In comparison with
the three-parameter model (XG2005), the new model leads to
much better results, not only in the repulsive region, but also in
the attractive region.

3.5. Heteronuclear diatomic systems

Alkali metals have been known for a long time to have very
weak interactions with helium with typical well depths of
0:5 � 1:5 cm�1 at pair separations of 6 � 8 Å. Mainly the repul-
sive branches of these potentials have been characterized with
experimental methods while the low collision energies needed to
gain information on the well region are not easily accessible. The
shallowness of the wells has led to the widespread belief that they
do not support bound states.

Of the diatomic van der Waals molecules, those containing he-
lium, the most chemically inert of the noble gases, are the most
weakly bound. There is much theoretical interest in the study of
diatomic molecules involving helium, including questions over
their existence. To date, the only ground-state helium diatomic
molecule that has been directly detected in the gas phase is He2.
Kleinekathöfer et al. [11] predicted that for all alkali-helium dia-
tomic molecules, there exists a single bound rovibrational state
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10:0), three-parameter potential (XG2005) (blue line, a ¼ 0:7621; b ¼
0:3249866; c ¼ 0:35, Ref.[23]) and Tang-Toennies (TT2012)) potential (dark filled

circles, A ¼ 17:96; b ¼ 1:2669, Ref.[21]) for the ground-state Hg2. The potential
energy VðRÞ ¼ EðRÞ � E1. The equilibrium distance Re and minimum energy Vmin in
the new model potentials are fitted to 6.955 Bohr and �1.786 mHartree, respec-
tively, of Ref. [21]. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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in the X2P ground electronic state. Very recently, weakly bound
van der Waals molecule LiHe has been detected spectroscopically
[40]. In Figure 5, we report the new potential for the ground-state
LiHe by fitting the Kleinekathofer-Tang-Toennies-Yiu (KTTY) po-
tential (KTTY) (The root-mean-square (RMS) is 0.04). In the repul-
sive part, the three-parameter (XG2005) curve is softer than KTTY
and the new one. In the large-R region, XG2005 shows a large dif-
ference from the KTTY and XG2005 curves. In the supporting mate-
rial (see Appendix A), we also report the results for NaHe, KHe,
RbHe and CsHe, which are in good agreement with the results of
Kleinekathöfer et al. [11].

3.6. Reduced potential curves

The improvement over the three-parameter model Eq. (1) leads
us to re-examine the scaling scheme of the potential energy curves
of diatomic systems. Is it possible to find a simple globally accurate
function for potential curves away from the vicinity of the equilib-
rium distance Re for van der Waals diatomic systems? To answer
this question, we test the global universality of the closed form
expression Eq. (5) for the systems investigated above. In Fig. S8
of the supporting material (see Appendix A), we present the results
for the scaling scheme of UðRsÞ ¼ VðRÞ=De with a dimensionless
length Rs ¼ ðR� ReÞ=Re [27], where De ¼ jEmin � E1j. It shows that
Rare-gas, Alkali-Rare gas, Alkaline-earth, or group 12 diatomic sys-
tems seem to present their own single binding energy relation.
However, All these systems do not support a single binding-energy
relation. This finding agrees with the conclusion demonstrated in
Ref. [27] and by Tang and colleagues [19].

For the scaling scheme of UðR�Þ ¼ VðRÞ=De with the dimension-
less length R� ¼ ðR� ReÞ=L2 [27], where L2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2De=f2

p
, and f2 the

second-order force constant of Eq. (5) at the equilibrium distance
Re, we report the results in Figs. S9–S23 (see the supporting mate-
rial). For a better view, all are referenced to the reduced potential
curve of the ground-state He2. It is found that all the systems
reported in this Letter show a single binding-energy relation in
the attractive region. This may be due to the fact that these sys-
tems all have a closed outer electronic s2 shell. Especially, we find
that for �1 < R� < 2, all reduced potential curves overlap well
with the reduced curve obtained from Rydberg function,
UðR�Þ ¼ �ð1þ

ffiffiffi
2
p

R�Þe�
ffiffi
2
p

R� [27], which was found to be an approx-
imate representation of all strongly-bound and weakly-bound dia-
tomic systems [27] (Actually, this reduced Rydberg function is also
a good representation of the potential curves of covalently bonded
materials, where Uða�Þ ¼ �ð1þ a�Þe�a� [41]). In the short-R range,
however, there is no single binding-energy relation, i.e., all systems
are well distinguished from each other. The present results for the
single-binding energy relation in the attractive region provide only
a conjecture. Further evidence to the conjecture is expected.

4. Conclusion

We have demonstrated that the modified pair-potential func-
tion form Eq. (5) is able to accurately describe the entire potential
curves of weakly bound diatomic systems that we have reported in
this Letter, performing much better than the three-parameter

model potential Eq. (1). This new function suggests a unique form
for describing the potentials of diatomic systems ranging from
strongly-bound molecules to weakly-bound diatomic complexes.

Appendix A. Supplementary data

In this supporting material, we provide a Nonlinear Least
Squares Fortran (Fortran 90) program and as an example, an input
file and an output for He2 as well as Figs. S1–S23 and a section
about how to determine potential parameters of Eq. (5). All the
supplementary data and info associated with this article can be
found in the online version. Supplementary data associated with
this article can be found, in the online version, at http://
dx.doi.org/10.1016/j.cplett.2013.12.072.
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