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Based on a molecular-orbital theory for H+
2 , we have proposed and tested a pair potential function

form for the diatomic systems. The new form has included the Pauli repulsive term, Rydberg poten-
tial, and London inverse-sixth-power energy, and is accurate at all relevant distances and simple
enough for practical application in all-atom computer simulations. We find that an “approximate”
universal reduced potential curve for strongly and weakly bound diatomic molecules may exist.
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1. INTRODUCTION
The solution of the Schrödinger equation for a diatomic
system1�2 under the Born-Oppenheimer approximation
leads to families of R-dependent potential-energy func-
tions E�R�, where R is the internuclear distance.
Then, all properties of the system can be extensively
explored with the complete basis set and information pro-
vided by the eigenfunctions of nuclear motion in the
derived potentials.1–5 In experiment, the interaction poten-
tials of diatomic systems can be directly obtained by
fully analyzing the spectroscopy data with the help of
Rydberg–Klein–Rees (RKR) method, semi-empirical or
empirical procedures.4�6 In theory, ab initio calculations7

or quantum Monte Carlo simulations8 may provide a direct
numerical approach to achieving accurate potential curves
for the diatomic systems, but they are quite prohibitively
expensive ways for solving weakly bound systems3 and/or
many-electron systems.4 Thus, attention has been paid
to all kinds of empirical approaches. To date, there are
many empirical functions that have been suggested to
describe the diatomic potentials.1–3�5�9–18 All of them can
be summarized in two kinds of function forms. One is the
well-known Dunham form,19 which is expressed on the
Taylor expansion of the potential E�R� at the equilibrium
internuclear distance Re. The second one is based on exact
analytical forms.1�2�5�13�14

∗Authors to whom correspondence should be addressed.
†Permanent address: 106 Walcourt Loop, College Station, Texas 77845.

The exact analytical form of the potential energy for
a diatomic system is of interest, not only in molecular
spectroscopy, but also in the prediction of clusters includ-
ing nanostructures, in the atom–atom collision theory, and
in the research of the analytical forms for the potential-
energy hyper-surfaces for polyatomic molecules in the
pair-interaction approximation, in particular as regards
the thermodynamic and kinetic parameters of molecular
liquids and gas. In this sense, it is of necessary to use
analytical model potentials that adequately describe the
regions at small and large internuclear distances R, as
well as the region at the equilibrium distance Re. Over the
past 80 years, numerous attempts to analytically construct
diatomic potentials have been reported.2�4–6�9–18 The well-
known potential functions include Morse, Rosen-Morse,
modified Rosen-Morse, Rydberg, Born-Mayer, Linnett,
Hulburt-Hirschfelder, Pöschl-Teller, Frost-Musulin,
Varshni III, Lippincott, Lennard-Jones, Maitland-Smith,
Tang-Toennies potentials1�2�4–6�11 as well as the recently
proposed Morse-based potentials.12�16 These analytical
potentials usually focus on describing either strongly
or weakly bound, neutral or singly-charged diatomic
molecules and often lose their quality for either small or
relatively large internuclear distance. Long-term research
effort has also been devoted to the construction of hybrid
potentials, which use different functions for different inter-
action regions of R4�6�15�17�18�20 and thereby need more
than four potential parameters. Well-known examples of
hybrid potentials include the combined Morse-van der

J. Nanosci. Nanotechnol. 2014, Vol. 14, No. 5 1533-4880/2014/14/3993/009 doi:10.1166/jnn.2014.8880 3993



Delivered by Publishing Technology to: Institute of Molecular and Cell Biology
IP: 137.132.123.69 On: Fri, 02 May 2014 00:38:21

Copyright: American Scientific Publishers

Pauli–Rydberg–London Potential: An Accurate Pair Potential Function for Diatomic Systems Xie et al.

Waals,6 Cvetko,15 general Buckingham-type exp(n,m),6

Bellert-Breckenridge,17 Rydberg–London potential,18 and
Morse-cubic spline-van der Waals (MSV)20 potential.

In this work, following the molecular-orbital theory
based approach,13 we construct a very simple analytical
potential function called Pauli–Rydberg–London Poten-
tial for diatomic systems. The potential function thus
obtained has significant applicability insofar as it can
describe diatomic molecules, ranging from weakly to
strongly bound systems, with a favorite accuracy for all
relevant internuclear distances. In particular, we find that
an “approximate” universal reduced potential for bound
diatomic systems may exist.

2. PAIR POTENTIAL MODEL
2.1. Analytical Potential Function Form
An analytical formula for the diatomic potential E�R� is
much easier to deal with than the energy values corre-
sponding to a series of values of the internuclear dis-
tance R, such as are provided by ab initio, advanced
quantum Monte Carlo calculation, or any other numerical
approach.1 For practical applications that require an ana-
lytical potential, it is of necessary to find an analytical
functional form, which satisfies three basic criteria for a
good diatomic potential:1

(i) Having a finite asymptotic value E� at R→�;
(ii) Allowing a global potential minimum Emin at the equi-
librium distance Re;
(iii) Approaching infinity as R goes to zero.

and is able to adequately describe short-, intermediate-,
and large-R regions of the diatomic potential. As well
as these characteristics, an additional characteristics (iv)
is that the constructed potential form involves Coulomb
and exchange interactions, but has only few parameters.
To build such a potential model, the choice of the func-
tional form is of great importance. Based on the molecular-
orbital theory21 for the simplest single-electron diatomic
system H+

2 , we have recently found an analytical func-
tional form13 that is able to model the diatomic potentials.
For convenience, we briefly summarize it here.
The Hamiltonian for H+

2 is given, in atomic units, by

H =−1
2
�2− 1

rA
− 1

rB
+ 1

R
(1)

where rA(rB) is the distances between the single electron
and nuclear A(B). We are able to obtain an exact solu-
tion for the ground state H+

2 . In order to understand how
the simplest version of the molecular-orbital theory may
be improved and to see how the new model potential is
constructed, we present the details of the exact solution
here. Considering the S-type trial function of H+

2 , one can
derive the energy of the bonding orbital21

E�R�= E�+ J1�R�+K1�R�

1+S0�R�
(2)

where E� = −1/2. The Coulomb integral J1�R� and
exchange integral K1�R� are defined by21

J1�R� = ��A
0 �
(
− 1
rB

+ 1
R

)
��A

0 � = e−2R

(
1+ 1

R

)
(3)

K1�R� = ��A
0 �
(
− 1
rA

+ 1
R

)
��B

0 � = e−R

(
1
R
− 2

3
R

)
(4)

respectively, where ��0� = e−r /
√
� is the 1s-orbital of

H atom. The overlap integral S0�R� between the atomic
orbital ��A

0 � and ��B
0 � is given by

S0�R�= ��A
0 ��B

0 � = e−R

(
1+R+ 1

3
R2

)
(5)

It is found that the analytical potential function Eq. (2)
of H+

2 satisfies the pair potential requirements set above
Ref. [13].
Figure 1 presents the resultant analytical curve of this

function Eq. (2). It shows an energy minimum Emin =
−0�56483 Hartree at an equilibrium internuclear distance
Re = 1�323 Å, and satisfies the necessary criteria and
characteristics for building a good diatomic potential.13

However, Eq. (2) should be constructively improved in
comparison with the most accurate data available in the
literature.22 Advanced ab initio calculations have shown
that if a much complicate trial function that involves polar-
ization and even diffuse functions is considered, then the
calculated potential curve will perform very well in all the
regions of R.13 We have demonstrated it in Figure 1 by
using couple cluster method with single and double excita-
tion (CCSD)23 with 3-21G (2 sets of Gaussian functions in
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Figure 1. The potential energy curve of the ground state of sim-
plest single-electron diatomic system, H+

2 : Analytical function Eq. (2)
(black line), CCSD/3-21G (green line), CCSD/6-31G(d, p) (blue line,13),
CCSD/6-311++G(3df , 2pd) (cyan line,13), and CCSD/aug-cc-pVQZ
(red line). The filled dots are the most accurate data reported in the
literature.22
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the valence region), 6-31G(d, p) (including p and d polar-
ization functions ), 6-311++G(3df , 2pd) (including 2p
and 1d polarization functions and diffuse functions), and
aug-cc-pVQZ (including 4s, 3p, 2d, 1f polarization func-
tions and diffuse functions) Gaussian-type basis sets.13 The
numerical potential curve for the ground-state H+

2 at the
level of CCSD/aug-cc-pVQZ is in much excellent agree-
ment with the most accurate literature data.22

2.2. Physics Insight
When we find an analytical functional form for construct-
ing a model potential, we need to introduce parameters
into the function. Before doing that, we expect to seek a
physics insight into the division of constructed potentials
into polarization and exchange, which can be traced back
at least to the work of Kolos in the 1960s24 and has a lot
of literatures since then. Here we focus on reviewing the
work of Tang and Toennies.25�26

By using the theory of the permutation group and
the unsymmetrical Rayleigh-Schrödinger perturbation the-
ory (commonly known as the polarization approximation),
Tang and Toennies25�26 developed a systematic and suc-
cessful procedure to take account of exchange energies
for the calculation of interatomic potentials for diatomic
systems, for example, H+

2 , H2, and multielectron diatomic
systems. The ground-state energy of a diatomic system can
be given by25

E = Epolar −
(
1−

N−1∑
n=0

Sn

)
�exch (6)

where Epolar = E�+∑N
n=1 �n is the sum of the polarization

energy series �n = ��0�V ��n−1� (n = 1�2� � � �), E� is the
zero-order energy, Sn is the nth-order overlap integral, �exch
is the exchange energy, and V is the perturbed term in the
Hamiltonian of the diatomic system.
For one-electron H+

2 , the plane in the middle of the two
protons divides the space into two parts, and the exchange
energy can be interpreted as a result from the electron
hopping back and forth across this plane. Therefore, the
“exchange” refers to the exchange of two protons. If the
first-order exchange energy �

�1�
exch is used, the ground state

energy of H+
2 is given by Ref. [26]:

E ≈ Epolar −
(
1−

N−1∑
n=0

Sn

)
�
�1�
exch (7)

where N is the perturbation order. As shown in Table I,
the potential energies at R= 1�0, 2.0, 3.0 Bohr are getting
closer to the exact values as the perturbation order N is
increased from N = 1 to N = 3.
For the first-order polarization approximation, the

energy Eq. (7) of the ground-state H+
2 can be written in

the following form25�26

E�R� = Epolar − �1−S0��
�1�
exch (8)

where Epolar = E� + J1�R� and �
�1�
exch = �S0J1�R� −

K1�R�	/�1−S2
0�. It can be shown that Eq. (8) is equivalent

to Eq. (2).
For two-electron H2, the exchange can be interpreted as

a result of an exchange of the two electrons. The potential
energy function for the ground-state H2 is then also given
by Eq. (8).25�26 This shows that both H+

2 and H2 bonding
can be understood in a similar fashion, despite that the ori-
gin of the exchange energy is totally different. That also
explains why both H+

2 and H2 have been important proto-
types for theoreticians to acquire a physical understanding
of the nature of chemical bonding.
For neutral multi-electron diatomic systems, there is

a fundamental approximation that the exchange interac-
tions between two multi-electron atoms is dominated by
the exchange of a single pair of electrons at any time.27

Taking the coupling of orbital and spin angular momenta
of all equivalent electrons into account, Tang, Toennies
and Yu26 concluded that “the exchange energy of a multi-
electron system is equal to the exchange energy of a single
pair multiplied by a rather complicated angular momen-
tum coupling constant 
” (see Eq. (164) in Ref. [26]).
Although the constant 
 is the result of a rather compli-
cated angular momentum coupling, all of them are identi-
cal to the results of a simple counting procedure. Thus, the
constant 
 is equal to the number of possible exchanges
between valence electrons with the same spin in the
two atoms.26 Based on the polarization approximation,25�26

the ground-state potential energy of neutral multi-electron
diatomics is also describable by Eq. (8).

2.3. New Potential Model
Stimulated by the ab initio CCSD calculation with polar-
ization and diffuse functions included and by the polar-
ization approximation approach with the increase of the
perturbation order N , we have recently constructed a sim-
ple three-parameter model potential13 for diatomic systems
based on the analytical form Eq. (2), i.e.,

E�R�����
�= E�+ J1�R�
�+K1�R�����

1+S0�R�
(9)

with

J1�R�
�= e−2
R

(
1+ 1

R

)
(10)

K1�R�����= e−�R

(
1
R
−�R

)
(11)

and S0�R� is given in Eq. (5). As shown in Table I,
this 3-parameter model potential for H+

2 agrees well
with the most accurate data for a set of parameters
(����
).13 It shows that the three parameters can be prop-
erly adjusted so that contributions of both the polariza-
tion and exchanging energies can be accounted for in an
efficient way, thereby achieving in effect the same goal
as that of using larger basis sets (e.g., 6-311++G(3df ,
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Table I. Comparison of the potential energies (Hartree) derived by using polarization approximation approach, and 3-parameter potential model13 for
H+

2 at the nuclear-nuclear distance R (bohr). Perturbation results are adapted from Ref. [25], accurate results are from Ref. [22], and � is the relative
error between theoretical and accurate results.

Perturbation theory25 3-Parameter model13 Accurate22

R E�N = 1� (�) E�N = 2� (�) E�N = 3� (�) Emodel (�) Eaccurate

1.0 −0.2884 (36.17%) −0.4406 (2.48%) −0.4403 (2.55%) −0.4724 (4.36%) −0.4518
2.0 −0.5538 (8.10%) −0.5876 (2.49%) −0.5994 (0.53%) −0.60263(0.01%) −0.6026
4.0 −0.5369 (1.68%) −0.5427 (0.62%) −0.5445 (0.29%) −0.5429 (0.59%) −0.5461

2pd), aug-cc-pVQZ) in the trial wavefunction.13 This 3-
parameter model has been successfully applied to over 200
diatomic systems13 (including weakly bound diatomics)
with closed-shell and/or S-type valence-shell constituents
over a significantly wide of internuclear distance. Never-
theless, its overall accuracy needs to be further improved,
in particular of the large-R portion of the potential.
On the other hand, as discussed before, polarization

and diffusion play an important role in a good descrip-
tion of the potential. Thus, the nth-order overlap integral
Sn should be taken into account in the construction of
model potential functions. Mathematically, the constructed
3-parameter potential function is not simple enough for
practical application. Meanwhile, in general, more param-
eters introduced in a potential function imply greater flex-
ibility and the great possibility of a closer representation
of the true potential E�R�. Therefore, based on the analyt-
ical form Eq. (2) and the 3-parameter potential model Eq.
(9), we re-construct a new pair potential form for diatomic
systems as follows:

E�R�����
� ��C6���

= E�+��J1�R���
�+K1�R�����
�	

− C6

R6+ �R−6
(12)

with

J1�R���
� = e−2
R

(
e−��−2
�R+ 1

R

)
(13)

K1�R�����
� = e−�R

(
1
R
e−�2
−��R−�R

)
(14)

� = 1
1+S0�R�

(15)

Above form satisfies the basic criteria (i) and (ii) for being
a good potential function. To satisfy the basic criterium
(iii), we examine Eqs. (3) and (4) and consider replacing
the 1/R and 1 terms in exchange and Coulomb integrals
on purpose by e−�2
−��R/R and e−��−2
�R, respectively, to
achieve a pure Pauli-type repulsive form e−2
R/R (Note:
there are two Pauli-type terms in the 3-parameter model,13)
and a pure Born-Mayer “exponential” form e−�R. This
is different from Tang-Toennis,5 and Rydberg–London18

potentials, whereas only the Born-Mayer form appears as
the repulsion terms.

Different from the 3-parameter model potential,13 to sat-
isfy the basic condition (iv), both Coulomb and exchange
integrals are described by adding one more parameter
to account for the effect of polarization and diffusion
functions. In the Coulomb integral J1���
�R�, we intro-
duce two parameters, � and 
 and replace 1 on purpose
with an exponent term e−��−2
�R. In the exchange integral
K1�����
�R�, we introduce three parameters, �, �, and 

and replace 1/R on purpose with e−�2
−��R/R.
To account for the effect of the sum (i.e.,

∑N−1
n=0 Sn�R�)

of the N -order overlap integral Sn�R� and to make the
function mathematically simple, we introduce a unitless
parameter � to replace the term containing the zero-order
overlap integral S0�R�.
In the large-R limit, where the atomic electron clouds

do not overlap considerably, the interaction energy of an
atomic pair is given by the well-known multipolar dis-
persion expansion. In this limit, the 3-parameter model
potential13 approaches E� exponentially, a feature different
from that suggested by the multipolar dispersion expan-
sion. Motivated by the work of Cahill and Parsegian,18

we combine the London inverse-sixth-power energy into
above proposed function.
Re-organizing the function (12), we have found that the

new potential model can be re-written in a simple form

E�R�����
��� ��C6� = E�+ 2�e−2
R

R
+�e−�R�1−�R�

− C6

R6+ �R−6
(16)

This new potential function constructed above includes
one pure Pauli-like term, 2�e�−2
R�/R, and one pure Born-
Mayer-like term, �e−�R. In particular, the new potential
contains a term, �e−�R�1−�R� (note: here � has a unit
of energy and � has a unit of of the inverse of the dis-
tance, different from the parameters � and � in Pauli-
Rydberg-London potential Eq. (16)), which is actually
the Rydberg potential proposed by Rydberg28 to incor-
porate spectroscopic data, and was largely ignored until
recently.18�29�30 In this sense, our newly constructed poten-
tial function is actually a hybrid form of Pauli repulsive
term, Rydberg potential, and London inverse-sixth-power
energy. We call this potential form Pauli–Rydberg–London
potential.
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Table II. The potential parameters of 11 pairs of neutral atoms. The values of �, �, �, � , and C6 are directly adapted from Refs. [18, 31]. The values
of 
 are determined in this work. Dissociation energy De and internuclear equilibrium distance Re,

31 and the scaled length quantities L2 calculated by
using Pauli–Rydberg–London potential are listed.

De (eV) Re (Å) � (Å−1) � (eV Ǻ−1) 
 (Å−1) � � (Å12) C6 (eV Å6) L2 (Å)

H2 4�7467 0�7417 2�99 2�453 9�90 53.8 47.6 3�884 0.4738
Ar2 0�01234 3�757 2�6920 0�2631 2�55 1720 177588 37�943 0.5890
Kr2 0�01735 4�017 2�5249 0�2466 2�25 2499 199064 78�214 0.6423
O2 5�2136 1�2075 4�48 1�06 5�50 3610 58.4 16�08 0.3911
N2 9�8995 1�09768 4�3533 1�1777 12�5 3752.6 34.8 14�382 0.3719
I2 1�5571 2�668 2�8013 0�4351 4�10 14361 208000 230�05 0.5384
NO 6�609 1�1590 4�4196 1�0943 8�20 3809.5 47.0 11�245 0.3644
OH 4�624 0�9707 3�6909 1�4668 7�30 377.8 32.5 6�854 0.4355
Li2 1�0559 2�6730 1�62 0�5101 3�00 199.48 2850000 829�33 1.1574
Na2 0�74664 3�0786 1�5311 0�4292 3�50 231.9 9400000 929�76 1.1811
K2 0�55183 3�9243 1�3409 0�3269 1�80 325.05 99400000 2328�6 1.3441

3. RESULTS
Based on the polarization approximation,5 the ground-
state potentials E�Ep� �ex� of H2 and other multi-electron
diatomic systems, when expressed in terms of the
polarization and exchange energies, can take a similar
form Eq. (8) to that of H+

2 , despite that their origins of the
exchange energy are totally different. Motivated by these
known theoretical results, we have carried out extensive
studies of many other diatomic systems, for which experi-
mental or ab initio data are available. The model potential
curves thus determined for these diatomic systems agree
with the available experimental or theoretical data. Table II
lists the parameters for 11 diatomic molecules, in which
the five parameters ������ ��C6 have already been deter-
mined by using Rydberg–London potential.18�31

3.1. Fitting the Potential Parameters
For practical application, we explain one important step
about how to get the parameters used in this new model
potential:
• First, the five parameters �, �, � , � and C6 are
obtained directly by using Rydberg–London potential,
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Figure 2. Fitting the sixth parameter 
 in the Pauli–Rydberg–London potential (this work, �= 2�99 Å−1, �= 2�453 eV Å−1, �= 53�8, � = 47�6 Å12,
C6 = 3�884 eV Å6) for the ground-state H2. The Rydberg–London potential (black line, � = 2�99 Å−1, � = 2�453 Å−1, � = 53�8 eV, � = 47�6 Å12,
C6 = 3�884 eV Å6,18) and accurate data (black open circles,7) are presented for fitting. Two energy scales are displayed: (a) E =−1�18∼1 hartree and
(b) E =−1�18∼−0�5 hartree. The fitting values of 
 are 1�5 (dark green line), 3.5 (cyan line), 6.5 (blue line), 9.9 (red line) Å−1.

�e−�R�1−�R�−C6/�R
6+ �R−6� and following the pro-

cedures developed in the recent work of Cahill.31

• Then, the sixth parameter 
 is achieved by fitting the
bound and large-R regions of the Rydberg–London poten-
tial, and by fitting the short-R region if the most accurate
data of the system is available in the literature.

Since the formulation of quantum mechanics, the hydro-
gen molecule has been one of the most favorite systems
used for testing quantum theory and for testing theoreti-
cal methods or calculations. Therefore, we study H2, the
simplest multi-electron system.
First, we show in Figure 2 how we adjust the additional

parameter 
 to improve the potential in comparison with
Rydberg–London potential18 and the most accurate data.7

First, we apply a a trial value of 
 = 1�5 Ǻ. We find that
the fitting potential curve, as shown in Figure 2, is far away
from the desired potential curve. Then, we decrease the
value of 
 from 
 = 1�5 Ǻ, and notice that the fitting curve
is getting worse. Then, we turn to increase the value of 
.
As shown in Figure 2, the fitting curve is getting better and
better as 
 is increased gradually from 
 = 1�5 Ǻ, to 3.5 Ǻ,

J. Nanosci. Nanotechnol. 14, 3993–4001, 2014 3997
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Figure 3. The comparison between Pauli–Rydberg–London potential (this work) (blue), Rydberg–London potential (red,18), 3-parameter model poten-
tial (dark-green,13), CCSD/6-311++G(3df , 2pd) (cyan), CCSD/aug-cc-pV5Z (black line), and the most accurate data (filled black circles,7) for
hydrogen molecule H2 at (a) R= 0.05∼0.25 Å; (b) R= 0.25∼2.1 Å; R= 2.1∼4.0 Å.

to 6.5 Ǻ. As 
 = 9�9 Ǻ, we find that the new potential
curve almost fits the accurate potential curve and all the
bound region of the Rydberg–London potential. Thus, the
value of the sixth parameter 
 is determined.
In Figures 3(a)–(c), we compare the new model poten-

tial with other model potentials and the most accu-
rate data for the ground-state hydrogen molecule H2

in the short-, intermediate-, and large-R regions. In the
short-R region (Fig. 3(a)), Rydberg–London potential18

has large difference from ab initio CCSD calculations,
the three-parameter model potential,13 and the Pauli–
Rydberg–London potential. In the intermediate-R region
(Fig. 3(b)), we find that all of them have quite identical
performance.
In the large-R region (Fig. 3(c)), CCSD/aug-cc-

pV5Z calculations are in excellent agreement with the
accurate literature data.7 Both Pauli–Rydberg–London and

Table III. The calculated vibrational energies for H2 using three-
parameter model,13 and Pauli–Rydberg–London (this work) potentials.
The value in the parenthesis is the relative error of the calculation from
experiment.32

3-Parameter model Pauli–Rydberg–London
� Exp. [eV] [eV] [eV]

0 −4.4774 −4.4628 (0.33%) −4.5247 (1.06%)
1 −3.9615 −3.9218 (1.00%) −3.9779 (0.41%)
2 −3.4747 −3.4166 (1.67%) −3.4729 (0.05%)
3 −3.0166 −2.9465 (2.32%) −3.0101 (0.22%)
4 −2.5866 −2.5111 (2.92%) −2.5856 (0.04%)
5 −2.1847 −2.1099 (3.42%) −2.1899 (0.24%)
6 −1.8110 −1.7427 (3.77%) −1.8169 (0.33%)
7 −1.4661 −1.4093 (3.87%) −1.4673 (0.08%)
8 −1.1508 −1.1097 (3.57%) −1.1459 (0.43%)
9 −0.8665 −0.8439 (2.61%) −0.8578 (1.00%)
10 −0.6153 −0.6123 (0.49%) −0.6068 (1.38%)
11 −0.4000 −0.4155 (3.88%) −0.3957 (1.08%)
12 -0.2245 −0.2543 (13.27%) −0.2271 (1.16%)
13 −0.0945 −0.1301 (37.67%) −0.1031 (9.10%)
14 −0.0174 −0.0452 (159.77%) −0.0264 (51.72%)

Rydberg–London potentials overlap well, have a slight
difference from the accurate data,7 and give a better perfor-
mance than the recent three-parameter model potential.13

Using the Pauli–Rydberg–London potential, we calcu-
late the rotationless vibrational levels for the ground-
state molecule H2. As observed in experiment,32 we have
obtained in total fifteen vibrational levels. The calculated
vibrational energies are listed in Table III and compared
with the results obtained by using the 3-parameter model
potential. For Pauli–Rydberg–London potential, we find
that calculated vibrational energies from � = 0 to 12 reach
a relative error of less than 1.5% from experiment,32 while
the energies for � = 13 and 14 have a relative error of 9.1%
and 51.72%, respectively. The large error of � = 13�14 is
due to the unfavorite performance of the potential in the
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Figure 4. The comparison between Pauli–Rydberg–London potential
(Red line, this work), accurate ab initio calculation (Blue line,34), and
RKR data (Open circles,33) for the ground-state oxygen molecule O2.
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Table IV. The calculated vibrational energies for 16O2 using Pauli–
Rydberg–London potential (this work). The value in the parenthesis is
the relative error of the calculation from recent RKR data.33

RKR data RKR data
� [eV] This work [eV] � [eV] This work [eV]

0 −5.117 −5.150 (0.64%) 17 −2.224 −2.226 (0.09%)
1 −4.924 −4.962 (0.77%) 18 −2.080 −2.038 (2.06%)
2 −4.734 −4.775 (0.86%) 19 −1.938 −1.909 (1.52%)
3 −4.546 −4.590 (0.96%) 20 −1.799 −1.831 (1.75%)
4 −4.362 −4.406 (0.99%) 21 −1.664 −1.646 (1.09%)
5 −4.181 −4.224 (1.02%) 22 −1.532 −1.464 (4.64%)
6 −4.002 −4.043 (1.01%) 23 −1.403 −1.291 (8.68%)
7 −3.826 −3.864 (0.98%) 24 −1.277 −1.129 (13.11%)
8 −3.654 −3.687 (0.89%) 25 −1.155 −1.044 (10.63%)
9 −3.484 −3.513 (0.83%) 26 −1.037 −0.978 (5.69%)
10 −3.316 −3.340 (0.72%) 27 −0.922 −0.840 (8.89%)
11 −3.152 −3.171 (0.60%) 28 −0.811 −0.714 (11.96%)
12 −2.990 −3.005 (0.50%) 29 −0.705 −0.600 (14.89%)
13 −2.831 −2.841 (0.35%) 30 −0.604 −0.498 (17.55%)
14 −2.675 −2.675 (0.00%) 31 −0.507 −0.407 (19.72%)
15 −2.522 −2.522 (0.00%) 32 −0.417 −0.327 (21.58%)
16 −2.372 −2.391 (0.79%) 33 −0.333 −0.257 (22.82%)

large-R region up to the dissociation limit. Overall, the
accuracies obtained by using this Pauli–Rydberg–London
potential are much better than those13 by using the three-
parameter potential model, in particular, in the large-R
region.

3.2. Diatomic Molecule O2

Oxygen is of great significance in biological, combus-
tion, and atmospheric chemistry as well as in many
other processes. The ground state of O2 is a triplet.
Very recently, Hajigeorgiou33 has determined the potential
energy function of the ground electronic state of the oxy-
gen molecule 16O2 by fitting a simple analytical model to
a set of vibrational-rotational term values calculated from
available Dunham coefficients. The potential energy func-
tion is accurate up to � = 31 (or up to an energy that is
90% of the dissociation limit) and is the most extensive
and dependable function reported in the literature for the
oxygen molecule to date, although there are indications
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Figure 5. Reduced potential curves U for diatomics in dimensionless scaling schemes: (a) Rs = �R−Re�/Re; (b), (c) R
∗ = �R−Re�/L2.

that the function may be trustworthy up to an energy of
99% of the dissociation limit.
In Figure 4, we present the Pauli–Rydberg–London

potential for the ground-state O2 (to be noted, the parame-
ter � is re-fitted to be 1.06, instead of 1.05 reported in the
literature).18 The curve is compated with accurate ab initio
calculation34 and recent RKR data points.33 We find that
the Pauli–Rydberg–London potential curve for O2 except
the large-R region (R > 2 Å) agrees well with literature
data.33�34

Using the Pauli–Rydberg–London potential determined
above, we calculate the rotationless vibrational levels for
the ground-state molecule O2. The results are summarized
in Table IV and compared with the recent RKR data.33

The calculated vibrational energies from � = 0 to 21 reach
a relative error of less than 2%, while those from � = 22
to 33 reach a relative error of 5% to 23%.

3.3. Reduced Potential Energy Curve
The search for a universal diatomic potential has great
interest for a number of practical chemical processes such
as chemisorption, adhesion, and cohesion, where similar
binding-energy relations were discovered.35–37 In history,
the tests of the universality6�11�14 of diatomic potentials
probed the relationship only in the vicinity of the equi-
librium internuclear distance Re. This is a severe test
since predictions of third and fourth derivatives were
involved.11 Since the actual diatomic potentials span vibra-
tional frequencies and dissociation energies, which range
over several orders of magnitude, the search for the uni-
versal potential turns into a quest for a suitable scaling
scheme that is able to bring the scattering data-points down
to almost a single smooth line.13�38 Through the years,
much work has been done on this issue.14�36�37 However,
various opinions persist whether or not a universal few-
parameter potential really exists.13 Rigorously speaking, it
could hardly be expected that an exact universal potential
function would exist for all diatomics. Is it possible to find
a simple, but “approximate” and accurate function form for
potential curves away from the vicinity of the minimum?
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To answer above question, we test the global univer-
sality of the Pauli–Rydberg–London potential form for
strongly bound and weakly bound diatomics. Here we
use two scaling schemes.14 One is the usual one with
a dimensionless length defined by Rs = ��R−Re�/Re�.
Another scaling scheme14 uses a dimensionless length
R∗ = ��R− Re�/L2� with the scaled length parameter
Ln = �n!De/fn�

�1/n��n = 2� evaluated at Re, where fn =
dnE�R�/dRn�R=Re is the nth force constant. Both schemes
define a scaled dimensionless energy as U = �E�R�/De�,
where De is the dissociation energy.
As shown in Figure 5(a), strongly or weakly bound

diatomics are distinguished from each other in the Rs

scheme. This scheme shows that there is no single
binding-energy relation for weakly and strongly bound
diatomics.
Then, using the R∗-scheme, as shown in Figures 5(b)(c),

we find that the 11 ground-state diatomic molecules can
have an “approximate” universal reduced potential curve
away from the vicinity of Re. Thus, while the values of
De and L2 vary from system to system (see Table II),
the reduced curve U�R∗� for these seemingly diverse sys-
tems does not. Moreover, as shown in Figure 5(c), we find
that there are some deviations from the reduced curve.
The determined values of L2 listed in Table II seem to
show that if one restricts oneself to a certain group of
diatomic molecules which have similar linkages (similar
L2 value), an universal potential curve exists for this group.
To demonstrate this point, we are collecting more and
more accurate data and expect to report it in the future.

4. CONCLUSION
The foregoing results clearly show that the molecular
orbital theory-based approach is able to develop an alter-
native family of few-parameter analytical potential func-
tions, which satisfy the four conditions set in Section
2, to describe the diatomic systems including weakly
bound diatomics. The calculated vibrational energies for
the ground-state diatomic molecule H2 and O2 by using the
Pauli–Rydberg–London model potential are in agreement
with experiment reaching a favorite accuracy applica-
ble for a widely internuclear distances. Thus, we antic-
ipate that the Pauli–Rydberg–London model potential
form may provide a useful guide towards supplement-
ing the potential curves obtained from the RKR, Dunham
and other methods. To date, there are many commer-
cial molecular-modeling softwares. They use pair poten-
tials more for speed than for accuracy (for example,
harmonic potential for covalently bonded pair of neu-
tral atoms, and the Lennard-Jones potential for unbonded
pairs).18 The constructed Pauli–Rydberg–London potential
is nearly as fast and accurate. We expect a possible appli-
cation of this new model potential in all-atom computer
simulations.

We have shown that an “approximate” universal
reduced potential function may exist for both weakly
and strongly bound diatomic systems. This needs to
be demonstrated by collecting more and more accurate
data.
JCX would like to thank Professor Jiangbin Gong for

providing the Fortran program for calculating the vibra-
tional energies of diatomic systems.
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